Topic Review
Lipases in the Food and Nutraceutical Industry
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. 
  • 2.1K
  • 09 Sep 2022
Topic Review
Recyclability of Abandoned Fishing Net-Based Plastic Debris
 Plastics in marine environments undergo molecular degradation via biocatalytic and photocatalytic mechanisms. Abandoned, lost, or discarded fishing gear (ALDFG) damages marine and coastal environments as well as plant and animal species. There is a need for a new and rapid “multidimensional molecular characterization” technology to quantify, at a batch level, the extent of photocatalytic or biocatalytic degradation experienced on each recovered fishing net, comprising molecular weight alteration, chemical functional group polydispersity and contaminant presence. Rapid multidimensional molecular characterization enables optimized conventional material mixing of recovered fishing nets. In this way, economically attractive social return schemes can be introduced for used fishing nets, providing an economic incentive for fishers to return conventional fishing nets for recycling.
  • 377
  • 08 Sep 2022
Topic Review
Types of Scaffolds in Cartilage Regeneration
There are two main types of scaffolds: natural polymers and synthetic polymers. On the one hand, natural polymers are proteins (e.g., collagen, SF) and polysaccharides (e.g., Alg, CS, and HA derivatives). Natural polymers already have a long history of application in wound treatment. They are the closest substances to human tissue and show biocompatibility and biodegradability without toxic byproducts, and their technologies and properties have been widely investigated. Furthermore, in the form of hydrogels, they can retain a great amount of water. However, natural polymers are normally poor in mechanical strength. On the other hand, synthetic polymers have different properties. They allow the better control of formation, surface morphology, mechanical strength and physicochemical properties than natural polymers. Among them, poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL) and poly(urethanes) (PU) are the most popular candidates in osteochondral regeneration. The limitations of synthetic polymers are poor hydrophilicity, proinflammatory degradation byproducts, and unmatched degradation rates. It is noticeable that these two types of polymers are not independent.
  • 741
  • 08 Sep 2022
Topic Review
Battery Specifications
Batteries are the heart and the bottleneck of portable electronic systems. They power electronics and determine the system run time, with the size and volume determining factors in their design and implementation. Understanding the material properties of the battery components—anode, cathode, electrolyte, and separator—and their interaction is necessary to establish selection criteria based on their correlations with the battery metrics: capacity, current density, and cycle life. 
  • 5.7K
  • 07 Sep 2022
Topic Review
Corrosion Mechanisms in Near-Neutral pH Stress Corrosion Cracking
The two major corrosion mechanisms encountered during stress corrosion of carbon steels in a near-neutral pH environment are anodic dissolution and hydrogen embrittlement. Anodic dissolution, also known as metal dissolution, is a process in which the metal is dissolved from the anodic site during corrosion process, and gases are released from the cathodic site and at the metal surface. This in turn reduces the wall strength and may lead to premature pipeline failure. Hydrogen embrittlement can be defined as the reduction of a metal’s tensile strength and ductility due to diffusion of hydrogen atoms into the metal’s crystalline lattices during a corrosion process. It causes premature brittle fracture of normally ductile metals under applied stress usually less than the yield strength of the metal. 
  • 560
  • 06 Sep 2022
Topic Review
Cell Membrane-Targeted Bioprobes for the Imaging of Organelles
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles.
  • 417
  • 06 Sep 2022
Topic Review
Molecular Solar Thermal Energy Storage
The design of molecular solar fuels is challenging because of the long list of requirements these molecules have to fulfil: storage density, solar harvesting capacity, robustness, and heat release ability. All of these features cause a paradoxical design due to the conflicting effects found when trying to improve any of these properties.
  • 596
  • 06 Sep 2022
Topic Review
Synthesis of CNTs and Biogenesis of BNTs
Nanotubes (NTs) are mainly known as materials made from various substances, such as carbon, boron, or silicon, which share a nanosized tube-like structure. Among them, carbon-based NTs (CNTs) are the most researched group. CNTs, due to their nonpareil electrical, mechanical, and optical properties, can provide tremendous achievements in several fields of nanotechnology. Unfortunately, the high costs of production and the lack of unequivocally reliable toxicity data still prohibit their extensive application. A significant number of intriguing nanotubes-like structures were identified in bacteria (BNTs). The majority of experts define BNTs as membranous intercellular bridges that connect neighboring bacterial cell lying in proximity. Most evidence suggested that bacteria exploit NTs to realize both antagonistic and cooperative intercellular exchanges of cytoplasmic molecules and nutrients. Among other consequences, it has been proposed that such molecular trade, including even plasmids, can facilitate the emergence of new non-heritable phenotypes and characteristics in multicellular bacterial communities, including resistance to antibiotics, with effects of paramount importance on global health.
  • 352
  • 06 Sep 2022
Topic Review
Graphene Oxide as an Implant Coating in Dentistry
Dental materials used for reconstructing tooth defects can be improved with graphene oxide (GO), dental implants can be coated using GO, it can be used in tissue engineering in order to repair bone defects and it can also be used to suppress cariogenic biofilm formation. Additionally, GO has also been promoted as a good candidate for neural implants, not only because it provides outstanding resistance to corrosion, but also because it promotes the growth of neuronal cells and reduces ROS expression.
  • 913
  • 06 Sep 2022
Topic Review
Applications of Hydrogels for Wound Healing
Hydrogels represent a class of materials that are widely used in soft tissue engineering of skin, blood vessel, muscle, and fat. Hydrogels are three-dimensional (3D) networks consisting of physically or chemically crosslinked bonds of hydrophilic polymers. The insoluble hydrophilic structures demonstrate a remarkable potential to absorb wound exudates and allows oxygen diffusion to accelerate healing.
  • 1.1K
  • 05 Sep 2022
  • Page
  • of
  • 467
ScholarVision Creations