Topic Review
Microfluidics in Gas Sensing
Rapid, real-time, and non-invasive identification of volatile organic compounds (VOCs) and gases is an increasingly relevant field, with applications in areas such as healthcare, agriculture, or industry. Ideal characteristics of VOC and gas sensing devices used for artificial olfaction include portability and affordability, low power consumption, fast response, high selectivity, and sensitivity. Microfluidics meets all these requirements and allows for in situ operation and small sample amounts, providing many advantages compared to conventional methods using sophisticated apparatus such as gas chromatography and mass spectrometry. This review covers the work accomplished so far regarding microfluidic devices for gas sensing and artificial olfaction. Systems utilizing electrical and optical transduction, as well as several system designs engineered throughout the years are summarized, and future perspectives in the field are discussed.
  • 1.2K
  • 20 Oct 2020
Topic Review
Microfluidic Synthesis of Halide Perovskite
Halide perovskites are increasingly exploited as semiconducting materials in diverse optoelectronic applications, including light emitters, photodetectors, and solar cells. The halide perovskite can be easily processed in solution, making microfluidic synthesis possible. 
  • 369
  • 12 Oct 2022
Topic Review
Microfluidic High-Throughput Platforms
High-throughput screening is a potent technique to accelerate the discovery and development of new materials. By performing massive synthesis and characterization processes in parallel, it can rapidly discover materials with desired components, structures and functions. Among the various approaches for high-throughput screening, microfluidic platforms have attracted increasing attention. Compared with many current strategies that are generally based on robotic dispensers and automatic microplates, microfluidic platforms can significantly increase the throughput and reduce the consumption of reagents by several orders of magnitude.
  • 691
  • 11 Feb 2021
Topic Review
Microfluidic Devices for Isolation of Circulating Tumor Cells
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In a very short span of time, microfluidics has emerged in several technological advancements. There are a variety of materials for microfluidic device fabrication, each with different properties according to the requirements. Based on the required specific characteristics of the fabrication material and product requirements, different techniques are used for the development of the device. Another major aspect is the cost of the involved material. In most cases, used devices are disposed of. Thus, the method involved should be economically feasible.
  • 420
  • 21 Apr 2022
Topic Review
Microextraction-Based Methods for Determination of Sulfonamides in Milk
Sulfonamides (SAs) represent a significant category of pharmaceutical compounds due to their effective antimicrobial characteristics. SAs were the first antibiotics to be used in clinical medicine to treat a majority of diseases, since the 1900s. In the dairy farming industry, sulfa drugs are administered to prevent infection, in several countries. This increases the possibility that residual drugs could pass through milk consumption even at low levels. These traces of SAs will be detected and quantified in milk. 
  • 332
  • 18 Jul 2023
Topic Review
Microextraction Techniques with Deep Eutectic Solvents
The development and application of sustainable solvents has been a hot topic in different scientific and technological areas. Deep eutectic solvents (DESs), were introduced in 2001 as an alternative to ionic liquids (ILs). These showed a stronger ecofriendly profile, with easier and cheaper production, while having similar properties. DESs contain large, asymmetrical ions that have low lattice energy and, thus, low melting points. They are often acquired by the complexation of a quaternary ammonium salt with a metal salt or hydrogen bond donor (HBD).
  • 271
  • 17 Jul 2023
Topic Review
Microextraction Techniques in Lipid Peroxidation Product Detection
Lipid peroxidation, the most aggressive reaction in food, results in the formation of reactive organic compounds that detrimentally impact food sensory qualities and consumers’ health. While controlled lipid peroxidation can enhance flavors and appearance in certain foods, secondary peroxidation products lead to sensory deterioration in a variety of products, such as oils, alcoholic beverages, and meat. Dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME). These techniques offer efficient and sensitive approaches to extracting and quantifying lipid oxidation products and contribute to the understanding of oxidative deterioration in various food products. 
  • 441
  • 26 Oct 2023
Topic Review
Microextraction Approaches Used to Assess Food Safety
The use of microextraction techniques to survey the presence of contaminants in the food chain is very advantageous, involving simpler and faster protocols, reduced amounts of solvents and samples, and consequently, reduced waste produced during analysis while conserving a high potential for automation. Additionally, this higher greener profile of the microextraction techniques will boost a progressive substitution of conventional extraction approaches by microextraction processes in most analytical applications, including the survey of food chain safety.
  • 367
  • 26 Jun 2023
Topic Review
Microenvironmental Behaviour of Nanotheranostic Systems
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases.
  • 311
  • 09 Aug 2022
Topic Review
Microencapsulation Technology of Phycocyanin
Phycocyanin (PC) is a blue fluorescent protein with multi-bioactive functions. The multi-bioactivities and spectral stability of phycocyanin are susceptible to external environmental conditions, which limit its wide application. Microencapsulation is a micro-packaging technology that encapsulates trace substances with polymer films. Multifarious strategies have been successfully investigated for the microencapsulation of PC.
  • 781
  • 28 Sep 2022
  • Page
  • of
  • 467
ScholarVision Creations