Topic Review
Monitoring of Bone Health
Changing lifestyle and food habits are responsible for health problems, especially those related to bone in an aging population. Poor bone health has now become a serious matter of concern for many of us. In order to avoid serious consequences, the early prediction of symptoms and diagnosis of bone diseases have become the need of the hour. From this inspiration, the evolution of different bone health monitoring techniques and measurement methods practiced by researchers and healthcare companies has been discussed. This paper focuses on various types of bone diseases along with the modeling and remodeling phenomena of bones. The evolution of various diagnosis tests for bone health monitoring has been also discussed. Various types of bone turnover markers, their assessment techniques, and recent developments for the monitoring of biochemical markers to diagnose the bone conditions are highlighted. Then, the paper focuses on the potential assessment of the recent sensing techniques (physical sensors and biosensors) that are currently available for bone health monitoring. Considering the importance of electrochemical biosensors in terms of high sensitivity and reliability, specific attention has been given to the recent development of electrochemical biosensors and significance in real-time monitoring of bone health.
  • 680
  • 02 Nov 2020
Topic Review
Molybdenum Disulfide
Molybdenum disulfide (MoS2) is one of the compounds discussed nowadays due to its outstanding properties that allowed its usage in different applications. Its band gap and its distinctive structure make it a promising material to substitute graphene and other semiconductor devices. It has different applications in electronics especially sensors like optical sensors, biosensors, electrochemical biosensors that play an important role in the detection of various diseases’ like cancer and Alzheimer. It has a wide range of energy applications in batteries, solar cells, microwave, and Terahertz applications. It is a promising material on a nanoscale level, with favorable characteristics in spintronics and magnetoresistance. 
  • 3.4K
  • 24 May 2021
Topic Review
Molecules of the Week
"Molecules of the Week" is a new project to collect and show the discovery of novel molecules, compounds as well as the researchers' story behind it.
  • 1.1K
  • 05 Nov 2021
Topic Review
Molecularly Imprinted Polymers-Based Biosensors
The MIP (molecularly imprinted polymer)-based biosensor can be considered an artificial antibody-integrated polymeric active layer that readily sustains stability in challenging testing chemical environments, such as high-temperature limits up to ~300 °C. Since general proteins are usually denatured in irreversible forms higher than ~80 °C, MIP-based biosensors are more stable in storage and even suitable for applications requiring a high-temperature range.
  • 1.7K
  • 08 Mar 2022
Topic Review
Molecularly Imprinted Polymers in Sample Preparation
Molecularly Imprinted Polymers (MIPs) are synthetic polymeric materials with imprinted sites complementary to a specific molecule and high affinity over analytes with analogous molecular structure. Extraction can benefit from the production of MIPs that can be applied as sorbents for the extraction of specific antibiotics. 
  • 469
  • 17 Jul 2023
Topic Review
Molecularly Imprinted Polymers
Molecularly imprinted polymers (MIPs) are synthetic recognition materials obtained by the polymerisation of functional and cross-linking monomers in the presence of a template. MIPs are attractive not only for their recognition properties that are close to those of natural receptors and their availability for a wide range of targets but also for their superior chemical and physical stability compared to biological receptors. 
  • 1.3K
  • 10 Jun 2021
Topic Review
Molecularly Imprinted Polymer-Based Luminescent Chemosensors
Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity with the luminescence detection. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different targeted analytes are constructed with different strategies, such as the incorporation of luminescent functional monomers, physical entrapment, covalent attachment of luminescent signaling elements on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials.
  • 361
  • 04 May 2023
Topic Review
Molecularly Imprinted Polymer Layers
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material.
  • 874
  • 29 Mar 2022
Topic Review
Molecularly Imprinted Polydopamine in Sensing Applications
Molecularly imprinted polymers (MIPs) are synthetic receptors that mimic the specificity of biological antibody–antigen interactions. By using a “lock and key” process, MIPs selectively bind to target molecules that were used as templates during polymerization. While MIPs are typically prepared using conventional monomers, such as methacrylic acid and acrylamide, contemporary advancements have pivoted towards the functional potential of dopamine as a novel monomer. The overreaching goal of the proposed review is to fully unlock the potential of molecularly imprinted polydopamine (MIPda) within the realm of cutting-edge sensing applications. 
  • 176
  • 19 Oct 2023
Topic Review
Molecularly Imprinted Nanoparticles Based Sensor
The development of a sensor based on molecularly imprinted polymer nanoparticles (nanoMIPs) and electrochemical impedance spectroscopy (EIS) for the detection of trace levels of cocaine is described in this paper. NanoMIPs for cocaine detection, synthesized using a solid phase, were applied as the sensing element. The nanoMIPs were first characterized by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering and found to be ~148.35 ± 24.69 nm in size, using TEM. The nanoMIPs were then covalently attached to gold screen-printed electrodes and a cocaine direct binding assay was developed and optimized, using EIS as the sensing principle. EIS was recorded at a potential of 0.12 V over the frequency range from 0.1 Hz to 50 kHz, with a modulation voltage of 10 mV. The nanoMIPs sensor was able to detect cocaine in a linear range between 100 pg mL-1 and 50 ng mL-1 (R2 = 0.984; p-value = 0.00001) and with a limit of detection of 0.24 ng mL-1 (0.70 nM). The sensor showed no cross-reactivity toward morphine and a negligible response toward levamisole after optimizing the sensor surface blocking and assay conditions. The developed sensor has the potential to offer a highly sensitive, portable and cost-effective method forcocaine detection.
  • 772
  • 02 Nov 2020
  • Page
  • of
  • 467
ScholarVision Creations