Topic Review
Design of Composite Fibers for Brain
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales—from several hundred microns down to tens of nanometers—for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment.
  • 161
  • 29 Jan 2024
Topic Review
Dimension Engineering in Noble-Metal-Based Nanocatalysts
Catalysts play a pivotal role in modern industries, such as energy, pharmaceuticals, and petrochemicals, serving as cornerstone of high-tech production. Noble metals, such as gold, silver, and platinum group elements, possess the superb catalytic characteristics of high-temperature oxidation resistance, corrosion resistance, stable electrochemical performance, high catalytic activity, and so on. These characteristics offer excellent prospects for applications in catalysis.
  • 201
  • 29 Jan 2024
Topic Review
Surfactants as Performance-Enhancing Additives in Supercapacitor Electrolyte Solutions
Wetting the surface area of an electrode material as completely as possible is desirable to achieve optimum specific capacity of an electrode material. Keeping this surface area utilized even at high current densities and even when inside small pores is required for high capacitance retention. The addition of surfactants at small concentrations to aqueous supercapacitor electrolyte solutions has been suggested as a way to improve performance in terms of capacitance, capacitance retention at increased current density and stability. Effects are pronounced with carbon materials used in electrochemical double-layer capacitors; they are also observed with redox materials. 
  • 272
  • 29 Jan 2024
Topic Review
Bio-Based Wood Protective Systems
Natural compounds and biopolymers materials contribute to protective matrices that safeguard wood surfaces against diverse challenges. Essential oils, vegetable oils, and bio-based polymers are explored for their potential in crafting eco-friendly and durable coating matrices. 
  • 275
  • 29 Jan 2024
Topic Review
Synthesis and Vibrational Properties of Conducting Polymers Composites
From composites based on carbon nanotubes (CNTs) and conducting polymers (CPs) to their biggest competitor, namely composites based on graphene or graphene derivate (GD) and CPs, there are many methods of synthesis that influence the morphology and the functionalization inside the composite, making them valuable candidates for EM both inside DSSCs and in supercapacitors devices. From the combination of CPs with carbon-based materials, such as CNT and graphene or GD, the perfect network is created, and so the charge transfer takes place faster and more easily.
  • 553
  • 26 Jan 2024
Topic Review
Biomass Feedstocks into Biofuel
The conversion of biomass to biofuels as a renewable energy source is continuously gaining momentum due to the environmental concerns associated with using fossil fuels. Biomass is a cost-effective, long-term natural resource that may be converted to biofuels such as biodiesel, biogas, bio-oil, and biohydrogen using a variety of chemical, thermal, and biological methods. Thermochemical processes are one of the most advanced biomass conversion methods, with much potential and room for improvement.
  • 175
  • 26 Jan 2024
Topic Review
Industrial Applications of Microfluidic Systems
With the proliferation of microelectromechanical systems (MEMS) technology, the syntheses of microfluidic devices or microdroplets have become increasingly important as tools for chemical analysis and synthesis. Microfluidic devices (microreactors, microchemical chips, etc.) that integrate the functions of chemical synthesis, analysis equipment, and chemical plants in a compact form are being investigated.
  • 379
  • 26 Jan 2024
Topic Review
Synthesis of Monoketone Curcuminoids
Curcumin (or diferuloylmethane), a component of Curcuma longa L. rhizomes, displays various biological and pharmacological activities. However, it is poorly bioavailable and unstable in physiological pH. MKCs’ antimicrobial, anticancer, antioxidant, and antiparasitic actions, as well as other less common MKC biological and pharmacological activities, have been shown to be similar or higher than curcumin. The promising biological and pharmacological activities, combined with the attractive synthetic aspects (e.g., good yields and an easiness of product isolation) to obtain MKCs, make this class of compounds an interesting prospect for further antimicrobial, anticancer, and antiparasitic drug discovery.
  • 174
  • 25 Jan 2024
Topic Review
CO2 Capture
In pre-combustion CO2 capture, the fuel (e.g., biomass, coal, natural gas) is firstly converted into syngas and then subjected to shift conversion to react CO and increase H2 content.
  • 105
  • 25 Jan 2024
Topic Review
Smart Polymer Materials for 4D Printing
Among the innovative materials gaining attention are smart materials, characterized by their ability to undergo changes in properties, such as shape, color, or size, in response to external stimuli like light, heat, humidity, or electric and magnetic fields. This class of programmable materials introduces a unique dimension to 3D printing, referred to as 4D printing. In 4D printing, the same process as 3D printing is used, but the printed objects possess the remarkable capability to dynamically transform their shape or properties over time in response to external stimuli. Some smart polymers exhibit minimal responses over extended periods or possess limited reversibility in their transformations. Despite the need for further advancement in achieving swift and precise transformations in 4D-printed objects, the realm of 4D printing presents novel opportunities across diverse applications such as textiles, aerospace, medical industries, electronics, and robotics.
  • 187
  • 25 Jan 2024
  • Page
  • of
  • 467
Video Production Service