Topic Review
Oxidative Stress and Human Ovarian Response
Oocyte quality is particularly sensitive to the metabolic endogenous and exogenous environment and a balanced signaling pathway between oxidant and antioxidant forces is fundamental for a proper follicular maturation. Women are born with a finite number of oocytes, and it is of key importance that the health of these oocytes is guaranteed throughout their reproductive life to ensure optimal ovulation, fertilization and subsequent embryonic development. The strategy by which the number and quality of oocytes can be preserved is the augmentation of systems capable of rapidly detecting and repairing DNA damage caused by a normal or abnormal metabolic status or by exposure to exogenous agents. Indeed, DNA damage repair is crucial for the integrity of the cellular genome and to its functionality. Noteworthily, for oocytes, it is essential to correct DNA damage in order to prevent the transmission of any genetic mutation to the offspring.
  • 431
  • 03 Aug 2022
Topic Review
Oxidative Quality of Dairy Powders
Lipid oxidation (LO) is a primary cause of quality deterioration in fat-containing dairy powders and is often used as an estimation of a products shelf-life and consumer acceptability. The LO process produces numerous volatile organic compounds (VOC) including aldehydes, ketones and alcohols, which are known to contribute to the development of off-flavours in dairy powders. The main factors influencing the oxidative state of dairy powders and the various analytical techniques used to detect VOC as indicators of LO in dairy powders are outlined.
  • 747
  • 19 Oct 2021
Topic Review
Oxidative Crosslinking of Peptides and Proteins
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function.
  • 587
  • 24 Feb 2022
Topic Review
Oxidative Catalytic Processes for APIs and Precursors Preparation
Active pharmaceutical ingredients (APIs) can be defined as those biological compounds used for the detection, prevention, and treatment of different types of diseases. Asymmetric oxidation processes have constituted a valuable tool for the synthesis of APIs, especially for the preparation of optically active sulfoxides, compounds with interesting biological properties. Biocatalyzed reactions usually occur with high efficiency, excellent selectivity, good yields, environmental sustainability, and lower costs, which make them more attractive from an industrial perspective. However, it must be taken into account that these procedures also present some drawbacks, such as the (relatively) high substrate specificity of biocatalysts or the low substrate loadings required due to their generally low solubility in water.
  • 720
  • 10 Apr 2023
Topic Review
Oxidation Protection of High-Temperature Oxidation-Resistant Coatings
Molybdenum and its alloys, with high melting points, excellent corrosion resistance and high temperature creep resistance, are a vital high-temperature structural material. However, the poor oxidation resistance at high temperatures is a major barrier to their application. 
  • 695
  • 28 Feb 2022
Topic Review
Overview of viable Bacteria Immobilisation
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. 
  • 1.2K
  • 25 Apr 2021
Topic Review
Overview of the Development of ZnO-Based Varistors
Voltage surge protection devices (SPDs) or surge arresters rely on metal oxide varistors (MOVs) to safeguard electrical equipment in consumer electronics and industrial electric power systems against the destructive temporary overvoltages (TOVs) resulting from transient switching surges or lightning strikes. The primary function of voltage-sensitive MOVs in SPDs is to prevent the damage caused by high-energy transients by clamping or eliminating them when a surge occurs. These MOVs are mounted in parallel with the components that they are designed to protect.
  • 520
  • 29 May 2023
Topic Review
Overview of Polylactic Acid
Poly(lactic acid) (PLA) is an important polymer that is based on renewable biomass resources. Because of environmental issues, more renewable sources for polymers synthesis have been sought for industrial purposes.
  • 4.1K
  • 20 Jul 2022
Topic Review
Overcoming Defects in Wide Bandgap Semiconductor Power Electronics
Crystal defects play roles in wide bandgap semiconductors and dielectrics under extreme environments (high temperature, high electric and magnetic fields, intense radiation, and mechanical stresses) found in power electronics. Defects requires real-time in situ material characterization during material synthesis and when the material is subjected to extreme environmental stress. It is shown that the reduction of defects represents a fundamental breakthrough that will enable wide bandgap (WBG) semiconductors to reach full potential. High-brightness X-rays from synchrotron sources and advanced electron microscopy techniques are used for atomic-level material probing to understand and optimize the genesis and movement of crystal defects during material synthesis and extreme environmental stress.
  • 461
  • 11 Jan 2022
Topic Review
Osteoinductivity/Antigenicity of Allogeneic Dentin Graft
: Studies on allogeneic demineralized dentin matrix (Allo-DDM) implantation in the 1960s and 1970s provided the most reliable preclinical evidence of bone formation and antigenicity in an extraosseous site. Recently, applications of Allo-DDM at skeletal sites were studied, and have provided reliable evidence of bone-forming capacity and negligible antigenicity. However, the osteoinductivity and antigenicity properties of Allo-DDM in extraskeletal sites have not yet been investigated due to the lack of follow-up studies after the initial research. This review aims to provide a foundation on the preclinical studies of Allo-DDM from 1960 to 2019, which could enable future researches on its osteogenic capability and antigenicity. In conclusion, Allo-DDM showed great potential for osteoinductivity in extraskeletal sites with low antigenicity, which neither adversely affected osteogenic capability nor provoked immunologic reactions. 
  • 484
  • 26 May 2021
  • Page
  • of
  • 467
ScholarVision Creations