Topic Review
Polymeric Based Hydrogel Membranes for Biomedical Applications
Hydrogel membranes combine the porous architecture and permeability properties of thin membranes with the dynamic mechanical properties and water absorption characteristics of polymeric hydrogels. The characteristics of hydrogel membranes bear a remarkable resemblance to physiological membranes, although the latter are much more complex than their synthetic counterparts.
  • 261
  • 06 Jun 2023
Topic Review
Polymer/Enzyme Composite Materials
A significant interest was granted to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices.
  • 782
  • 31 Oct 2022
Topic Review
Polymer/Clay Nanocomposites
Clays and clay minerals are common natural materials, the unique properties of which have attracted the interest of the industry, especially because these materials are easily available, cheap, and non-toxic. Clays and clay minerals are widely used in many applications, such as in ceramic production, in the clarification of liquids, pollutant adsorbers, filler in composites and nanocomposites, soil amendments, in pharmacy, etc.
  • 200
  • 18 Jan 2024
Topic Review
Polymer–Metal Composites Materials for Healthcare Device
An ideal medical implant requires optimized properties on both bulk and microscopic scale that can hardly be accomplished by using a single material. Metallic implants such as titanium-based implants possess excellent mechanical properties in general but suffer from corrosion; polymeric implants can be multifunctional and biodegradable, however, difficult to provide some crucial mechanical properties like ductility. With the advance in polymer science and metallurgy, the polymer–metal composite materials serve as an emerging class of healthcare device with optimized bulk and microscopic properties, such polymer–metal composite devices provide good mechanical support, good bio-integration, good hygiene, and minimize bacterial infection and reduced hypersensitivity reactions.
  • 973
  • 27 Sep 2022
Topic Review
Polymer–Lipid Pharmaceutical Nanocarriers
Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bi-oavailability of drugs can be solved by the design of suitable delivery systems based on the com-bination of two pillar classes of ingredients: polymers and lipids. At the same time, modern tech-nologies are required to overcome production limitations (low productivity, high energy con-sumption, expensive setup, long process times) to pass at the industrial level.
  • 803
  • 19 Feb 2021
Topic Review
Polymer-Matrix Composites - Environmental Fatigue, Creep, Long-Term Durability
Polymer-matrix composites are widely used in engineering applications. Yet, environmental factors impact their macroscale fatigue and creep performances significantly, owing to several mechanisms acting at the microstructure level. Seawater, due to a combination of high salinity and pressures, low temperature and biotic media present, also contributes to the acceleration of fatigue and creep damage. Similarly, other liquid corrosive agents penetrate into cracks induced by cyclic loading and cause dissolution of the resin and breakage of interfacial bonds. UV radiation either increases the crosslinking density or scissions chains, embrittling the surface layer of a given matrix. Temperature cycles close to the glass transition damage the fibre–matrix interface, promoting microcracking and hindering fatigue and creep performance. The microbial and enzymatic degradation of biopolymers is also studied, with the former responsible for metabolising specific matrices and changing their microstructure and/or chemical composition. 
  • 750
  • 07 Jul 2023
Topic Review
Polymer-Drug Conjugate in Breast and Lung Cancer
Cancer is a chronic disease that is responsible for the high death rate, globally. The administration of anticancer drugs is one crucial approach that is employed for the treatment of cancer, although its therapeutic status is not presently satisfactory. The anticancer drugs are limited pharmacologically, resulting from the serious side effects, which could be life-threatening. Polymer drug conjugates, nano-based drug delivery systems can be utilized to protect normal body tissues from the adverse side effects of anticancer drugs and also to overcome drug resistance. They transport therapeutic agents to the target cell/tissue. 
  • 523
  • 29 Mar 2022
Topic Review
Polymer-Derived Ceramics Technology
Ceramics have become indispensable materials for a wide range of industrial applications due to their excellent properties.
  • 640
  • 01 Dec 2022
Topic Review
Polymer-Derived Ceramics
Ceramics derived from organic polymer precursors, which have exceptional mechanical and chemical properties that are stable up to temperatures slightly below 2000 °C, are referred to as polymer-derived ceramics (PDCs).
  • 2.1K
  • 09 Feb 2021
Topic Review
Polymer-Based Thermally Conductive Materials by Fused Filament Fabrication
With the miniaturization and integration of electronic products, the heat dissipation efficiency of electronic equipment needs to be further improved. Notably, polymer materials are a choice for electronic equipment matrices because of their advantages of low cost and wide application availability. Intelligent electronic devices are currently being researched to meet people’s pursuit of a high-quality life through integration and miniaturization. In order to ensure product safety and operational efficiency, it is imperative to improve the thermal conductivity of electronic devices. Polymers are frequently used in preparing heat dissipation materials because of their low price, light weight, ease of processing, and wide applications.
  • 552
  • 25 Oct 2022
  • Page
  • of
  • 467
ScholarVision Creations