Topic Review
Nickel(II) Precatalysts
Nickel(II) precatalysts are a type of catalyst used in organic reactions. Many transformations are catalyzed by nickel in organometallic chemistry and in organic synthesis. Many of these transformations invoke a low valent (generally Ni(0)) species as the active catalyst. Unfortunately, unlike its counterpart, Pd(0), Ni(0) catalysts are predominantly confined to the glovebox due to their high instability to air and water, with the most common Ni(0) catalyst being Ni(cod)2. Additionally, Ni(cod)2 is more expensive than many Ni(II) salts and the quality varies significantly amongst suppliers. To make nickel catalysis more accessible and amenable to synthesis and industrial purposes, the use of air-stable Ni(II) precursors has emerged as an important development in this area of research. This page describes the more commonly employed nickel(II) precatalysts, their synthesis for those not commercially available, and the methods for their reduction to Ni(0) complexes.
  • 1.3K
  • 08 Nov 2022
Topic Review
Magnetorheological Elastomers
Magnetorheological elastomers (MREs) are magneto-sensitive smart materials, widely used in various applications, i.e., construction, automotive, electrics, electronics, medical, minimally invasive surgery, and robotics. Such a wide field of applications is due to their superior properties, including morphological, dynamic mechanical, magnetorheological, thermal, friction and wear, and complex torsional properties.
  • 1.3K
  • 28 Dec 2020
Topic Review
Chorioallantoic Membrane Assay in Nanotoxicology
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation.
  • 1.3K
  • 08 Dec 2020
Topic Review
Photo-/Electro-Driven Thermochromic Smart Windows
Thermochromic smart windows can automatically control solar radiation according to the ambient temperature. Compared with photochromic and electrochromic smart windows, they have a stronger applicability and lower energy consumption, and have a wide range of application prospects in the field of building energy efficiency. This entry describes that trends of photo-/electro-driven thermochromic smart windows.
  • 1.3K
  • 15 Dec 2021
Topic Review
Films and Coatings Deposition Methods
The modern methods of films and coatings deposition find many new application in industry and technology. The methods are mainly physical and categorized by the species participating in deposits build-up as: (i) atomistic; (ii) granular; and (iii) bulk. The examples of emerging methods developed by the author and belonging to each category are briefly discussed.
  • 1.3K
  • 11 Aug 2023
Topic Review
Smart ECM-Based Electrospun Biomaterials
Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the “click” concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the “click” reactions. Here, we provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials and propose a design of a smart ECM-based electrospun system suitable for skeletal muscle tissue regeneration.
  • 1.3K
  • 24 Sep 2020
Topic Review
Phage Applications against Biofilms
Biofilms are clusters of bacteria that live in association with surfaces, attached to other bacterial cells and to the surface by an extracellular polymeric matrix. Biofilms are capable of adhering to a wide variety of surfaces, both biotic and abiotic, including human tissues, medical devices, and other materials, representing a major threat causing infectious diseases and economic losses. Unfortunately, current antibiotics and common disinfectants have shown limited ability to remove biofilms adequately. Here, phage-based treatments are proposed as promising alternatives for biofilm eradication, including phage therapy, phage-derived enzymes, genetically modified phages, and phages in combination with antibiotics.
  • 1.3K
  • 05 Nov 2020
Topic Review
Mechanical Properties of Sugarcane-Bagasse-Ash-Integrated Concretes
Leading sugar-producing nations have been generating high volumes of sugarcane bagasse ash (SCBA) as a by-product. SCBA has the potential to be used as a partial replacement for ordinary Portland cement (OPC) in concrete, from thereby, mitigating several adverse environmental effects of cement while keeping the cost of concrete low. The majority of the microstructure of SCBA is composed of SiO2, Al2O3, and Fe2O3 compounds, which can provide pozzolanic properties to SCBA.
  • 1.3K
  • 30 Oct 2022
Topic Review
Nanocellulose Hybrids with Magnetic Nanoparticles
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In particular, superparamagnetic iron oxides nanoparticles with very small size (SPIONs) are non-toxic in small concentration, biodegradable and biocompatible and display a high magnetic resonance imaging (MRI) contrast effect. However, for biomedical applications, SPIONs need to be covered by a biocompatible shell to prevent aggregation or degradation and to delay the immune response. Nanocellulose proved to be an excellent biocompatible matrix for SPIONs in MRI applications.
  • 1.3K
  • 08 Sep 2020
Topic Review
Egyptian Honeybee
The Egyptian honeybee (Apis mellifera lamarckii) is one of the honeybee subspecies known for centuries since the ancient Egypt civilization. The subspecies of the Egyptian honeybee is distinguished by certain traits of appearance and behavior that were well-adapted to the environment and unique in a way that it is resistant to bee diseases, such as the Varroa disease. The subspecies is different than those found in Europe and is native to southern Egypt.
  • 1.3K
  • 21 Oct 2022
  • Page
  • of
  • 467
ScholarVision Creations