Topic Review
Nanocarriers for Sustainable Active Packaging
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. 
  • 585
  • 26 Jan 2022
Topic Review
Synthesis and Application of Three-Dimensional Graphene-Based Aerogels
Aerogel is generated by the replacement of liquid inside a gel with gas by freeze-drying or supercritical drying technique. Three-dimensional graphene-based aerogels (3D GAs), combining the intrinsic properties of graphene and 3D porous structure,  can be prepared via self-assembly method, template-guided method and sol-gel process. They have attracted increasing research interest in varied fields with potential applications in photoredox catalysis, biomedicine, energy storage, supercapacitor or other single aspect.
  • 585
  • 22 Feb 2022
Topic Review
Enhanced Performance of Lithium-Ion Batteries
Lithium-ion batteries (LIBs) have been used in portable electric devices and electric vehicles (EVs) for years due to their high energy and power densities, satisfactory cycle life and the affordable materials and manufacturing costs. To meet the growing market demand for cheaper and more efficient energy storage technologies for EVs and power grids, higher energy storage density and efficiency, and a longer cycle life should be achieved in the next generation of LIBs. Silicon (Si) is considered as one of the most promising candidates for next generation negative electrode (negatrode) materials in LIBs due to its much higher theoretical specific charge capacity than the current commercial negatrode (carbon-based).
  • 585
  • 25 Apr 2022
Topic Review
Lignocellulosic Biomass as a Renewable Source
Lignocellulosic biomass is the primary structural component of plant matter and is mostly inedible, generally referring to organic materials such as wood, grass, and agricultural crop residues. Biomass is a plentiful and carbon-neutral renewable energy source that may be used to create platform chemicals and fuels, especially considering that up to 75% of initial energy can be converted into biofuels.
  • 585
  • 13 Oct 2022
Topic Review
Noise in Designing a Transmission Electron Microscopy Laboratory
The proper design of a transmission electron microscopy facility is mandatory to fully use the advanced performances of modern equipment, capable of atomic resolution imaging and spectroscopies, and it is a prerequisite to conceive new methodologies for future advances of the knowledge. When quantitatively evaluating the effects of noise on TEM (Transmission Electron Microscopy)/STEM (Scanning Transmission Electron Microscopy) experiments, there are three main parameters to be considered: spatial resolution, signal amplitude, and signal-to-noise ratio. All of them can be negatively affected by the presence of external sources of noise, whose removal is crucial for TEM/STEM experiments to exploit the highest instrumental performance and capabilities. All noise sources of interest and relevant mitigation approaches are analyzed in detail. 
  • 585
  • 09 May 2023
Topic Review
Electroplated Nanotwinned Copper in Microelectronic Packaging
Copper is the most common interconnecting material in the field of microelectronic packaging, which is widely used in advanced electronic packaging technologies. However, with the trend of the miniaturization of electronic devices, the dimensions of interconnectors have decreased from hundreds of microns to tens of or even several microns, which has brought serious reliability issues. As a result, nanotwinned copper (nt-Cu) has been proposed as a potential candidate material and is being certified progressively.
  • 585
  • 17 Aug 2023
Topic Review
Modified Nb-Si-Based Multi-Element Alloys
Nb-Si-based superalloys are considered as the most promising high-temperature structural material to replace the Ni-based superalloys. Unfortunately, the poor oxidation resistance is still a major obstacle to the application of Nb-Si-based alloys. Alloying is a promising method to overcome this problem.
  • 584
  • 22 Nov 2021
Topic Review
Functionalization of Cotton Fabrics with Nanotechnology
Textiles are commonly used in industries and households. The surface modification of textiles to impart multiple functions has recently gained a lot of attention. Researchers have successfully functionalized textiles for antibacterial, self-cleaning, flame retardant, UV protection, and enhanced performance properties. Therefore, high-tech materials and fabric constructions will improve wearer comfort while incorporating distinctive features. Among natural fibers, cotton is the most popular because of its softness, breathability, safety, low cost, regeneration performance, strength, elasticity, biodegradability, and hydrophilicity. Cotton fabric does, however, have some disadvantages, including the possibility of microbial attacks on its fibrous structure, the ease with which creases form, and the loss of mechanical strength. Microorganisms can easily grow and propagate on cotton fabrics because they are able to store humidity and have a high specific surface area. A variety of fields, including health and medicine, have benefited from cotton fibers with antimicrobial properties. Hygienic, functional, durable, and comfortable cotton fabrics are expected in modern times. Utilizing nanotechnology in cotton cloth is a significant challenge in achieving these characteristics and advancements. Nanoparticles have been incorporated into textile finishing stages to address the inherent problems while also imparting functional properties to textile materials.
  • 584
  • 21 Oct 2022
Topic Review
Enzymes Related to Early Skin-Aging
Skin is the largest organ of the human body and is a great shield, as it protects it from external infections (environmental and chemical pollutants) as well as from UV irradiation. However, it is vulnerable since its degradation can occur both due to extrinsic and intrinsic factors, leading to early aging. Among all, extrinsic skin aging, called photoaging, is a remarkable result of oxidative stress caused by UV irradiation. In addition, reactive oxygen species (ROS) have also been found to contribute to skin aging, as they are produced in skin cells through UV irradiation, although at low concentrations they could be beneficial for some signaling pathways. Environmental and chemical pollutants also produce ROS, triggering a number of pathologies. Skin’s connective tissue includes a number of constituents, including collagen fibrils, elastic fibers, glycoproteins, and glycosaminoglycans. Among all, proteins like elastin, collagen, the glycosaminoglycan hyaluronic acid, and a polymeric pigment called melanin play pivotal roles in the regulation of skin’s elasticity as well as its protection against UV irradiation.
  • 584
  • 28 Nov 2022
Topic Review
Ionic Hydrogels
Hydrogels are three-dimensional polymer networks with excellent flexibility. Ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications.
  • 584
  • 06 Apr 2023
  • Page
  • of
  • 467
ScholarVision Creations