Topic Review
Haloanisoles in Wine
Haloanisoles in wine have devastating effects on the aroma and quality of the wine. 2,4,6-trichloroanisole (TCA) was discovered and coined as “cork taint” in 1982. There are many more haloanisoles that contribute to these musty odors, including 2,4,6-Tribromoanisiole (TBA), 2,3,4,6-tetrachloroanisole (TeCA), and pentachloroanisole (PCA). While TCA, TeCA, and PCA can all be traced back to the cork, TBA’s phenol precursor is ubiquitous in building material as a fire retardant, making it a much larger vector. All haloanisoles have the ability to aerosolize and resettle onto surfaces in the winery, making this a very difficult problem to eliminate. 
  • 595
  • 23 Mar 2023
Topic Review
Synthesis of TiO2 at the Industrial Level
Among a diverse range of dense mineral reserves found across the world, only ilmenite and rutile ores are capable of yielding titanium compounds, specifically titanium dioxide, through industrial processes. Although ilmenite and rutile are extensively used to extract TiO2 at the industrial level, through the sulphate and chloride processes, they can also be recognized to possess the potential to be employed as the raw material to synthesize other titanium compounds as well. Since titanium containing compounds possess the capability to be applied in numerous applications, such as environmental remediation, energy technologies, the pharmaceutical industry, paint industry and textile industry, exploration of the ability of these ore materials to yield titanium species is highly significant in the field of research as well as the industrial sector.
  • 595
  • 17 May 2023
Topic Review Peer Reviewed
Perovskite-Type Oxides as Exsolution Catalysts in CO2 Utilization
Perovskite-type oxides (ABO3) are a highly versatile class of materials. They are compositionally flexible, as their constituents can be chosen from a wide range of elements across the periodic table with a vast number of possible combinations. This flexibility enables the tuning of the materials’ properties by doping the A- and/or B-sites of the base structure, facilitating the application-oriented design of materials. The ability to undergo exsolution under reductive conditions makes perovskite-type oxides particularly well-suited for catalytic applications. Exsolution is a process during which B-site elements migrate to the surface of the material where they form anchored and finely dispersed nanoparticles that are crucially important for obtaining a good catalytic performance, while the perovskite base provides a stable support. Recently, exsolution catalysts have been investigated as possible materials for CO2 utilization reactions like reverse water–gas shift reactions or methane dry reforming.
  • 595
  • 13 Dec 2023
Topic Review
Combinatorial Laser Technologies
Modification of metallic implants with biocompatible coatings is usually required to avoid premature loosening of prosthesis. Specific to the bone implant tissue, coatings with specific characteristics are proposed in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied to a large variety of biocompatible inorganic coatings for biomedical prosthetic applications. Matrix assisted pulsed laser evaporation (MAPLE) is a PLD-derived technology used for depositions of thin organic material coatings. In an attempt to surpass solvent related difficulties, when different solvents are used for blending various organic materials, combinatorial MAPLE was proposed to grow thin hybrid coatings, assembled in a gradient of composition. Thus, by applying combined laser technologies one may develop composite coatings with biomimetic features able to modulate cellular behaviour for tissue engineering or cancer research applications.
  • 594
  • 29 Oct 2020
Topic Review
Polymer Membranes in Contamination Situations
Depending on the type of contamination, various methods are used, including sorption, biodegradation, separation, or ion exchange processes in which membranes play an important role. The type of membrane is selected in respect of both the environment and the type of neutralized pollutants.
  • 594
  • 17 Jun 2021
Topic Review
Lysophosphatidic Acid and Cancer
Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis.
  • 594
  • 14 Jul 2021
Topic Review
Chiral Monolithic Silica-Based HPLC Columns
Ultrahigh pressure HPLC is based on the use of small sub-2-µm non-porous particle packed columns that can provide large surface area than the classical particle packed stationary phase for more efficient separation thus allowing the use of shorter columns with equivalent resolution to save the analysis time. The accompanied high back pressure of the small particle packed columns is overcoming by running the column in an ultrahigh pressure HPLC instrument that can resist high back pressure of up to 15,000 psi or 10,000 psi for longer column lifetimes. This has been achieved by the introduction of UHPLC system to run the chromatographic process with the sub-2-µm particle packed columns. 
  • 594
  • 31 Aug 2021
Topic Review
Soluble Chitosan Derivatives Nanoparticles
Herein, a novel chitosan derivative nanoparticle was proposed to function as a delivery carrier. First of all, an improvement was made to the way N-2-hydroxypropyl trimcthyl ammonium chloride chitosan (N-2-HACC) was synthesized. 
  • 594
  • 02 Dec 2021
Topic Review
Reactions of Graphene Nano-Flakes
The elucidation of the mechanism of the chemical evolution of the universe is one of the most important themes in astrophysics. Polycyclic aromatic hydrocarbons (PAHs) provide a two-dimensional reaction field in a three-dimensional interstellar space. Additionally, PAHs play an important role as a model of graphene nanoflake (GNF) in materials chemistry.
  • 594
  • 27 May 2022
Topic Review
Proteolysis-targeting Chimeras for Drug Targeted Protein Research
Proteolysis-targeting chimera (PROTAC) is a heterobifunctional molecule. Typically, PROTAC consists of two terminals which are the ligand of the protein of interest (POI) and the specific ligand of E3 ubiquitin ligase, respectively, via a suitable linker. PROTAC degradation of the target protein is performed through the ubiquitin–proteasome system (UPS).
  • 594
  • 26 Sep 2022
  • Page
  • of
  • 467
ScholarVision Creations