Topic Review
Thiomersal and Vaccines
Thiomersal (or Thimerosal) is a mercury compound used as a preservative used in some vaccines. Anti-vaccination activists promoting the incorrect claim that vaccination causes autism, have asserted that the mercury in thiomersal is the cause. There is no scientific evidence to support this claim. The idea that thiomersal in vaccines might have detrimental effects originated with anti-vaccination activists and was sustained by them and especially through the action of plaintiffs' lawyers. The potential impact of thiomersal on autism has been investigated extensively. Multiple lines of scientific evidence have shown that thiomersal does not cause autism. For example, the clinical symptoms of mercury poisoning differ significantly from those of autism. In addition, multiple population studies have found no association between thiomersal and autism, and rates of autism have continued to increase despite removal of thiomersal from vaccines. Thus, major scientific and medical bodies such as the Institute of Medicine and World Health Organization (WHO) as well as governmental agencies such as the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC) reject any role for thiomersal in autism or other neurodevelopmental disorders. In spite of the consensus of the scientific community, some parents and advocacy groups continue to contend that thiomersal is linked to autism and the claim is still stated as if it were fact in anti-vaccination propaganda, notably that of Robert F. Kennedy, Jr., through his group Children's Health Defense. Thiomersal is no longer used in most children's vaccines in the United States, with the exception of some types of flu shots. While exposure to mercury may result in damage to brain, kidneys, and developing fetus, the scientific consensus is that thiomersal has no such effects. This controversy has caused harm due to parents attempting to treat their autistic children with unproven and possibly dangerous treatments, discouraging parents from vaccinating their children due to fears about thiomersal toxicity and diverting resources away from research into more promising areas for the cause of autism. Thousands of lawsuits have been filed in the U.S. to seek damages from alleged toxicity from vaccines, including those purportedly caused by thiomersal. US courts have ruled against multiple representative test cases involving thiomersal. A 2011 journal article described the vaccine-autism connection as "perhaps, the most damaging medical hoax of the last 100 years". Outside of the United States, worries about thiomersal had not gained any significant traction as of 2009.
  • 629
  • 21 Nov 2022
Topic Review
Graphene Sensors
Graphene is one of the most promising materials for gas-sensor applications.
  • 628
  • 07 Apr 2021
Topic Review
Biomaterials for Drugs Nose–Brain Transport
Recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood–brain barrier, consequently increasing drug cerebral bioavailability.
  • 628
  • 13 Apr 2021
Topic Review
Carbon Nano-Infused Cementitious Composites
A rising demand for efficient functional materials brings forth research challenges regarding improvements in existing materials. Carbon infused cementitious composites, regardless of being an important research topic worldwide, still present many questions concerning their functionality and properties.
  • 628
  • 29 Sep 2021
Topic Review
Aptamer-Bound Nanomaterials in Cancer Therapy
Cancer is still a major disease that threatens human life. Although traditional cancer treatment methods are widely used, they still have many disadvantages. Aptamers, owing to their small size, low toxicity, good specificity, and excellent biocompatibility, have been widely applied in biomedical areas. Therefore, the combination of nanomaterials with aptamers offers a new method for cancer treatment.
  • 628
  • 08 Oct 2021
Topic Review
Direct Synthesis of Functionalized Azahelicenes
As azahelicenes are helicenes bearing one or more nitrogen atom(s) in the molecular framework, parent azahelicenes can be functionalized on carbon atoms by exploiting the presence of the electron-withdrawing nitrogen atom. Moreover, they can be transformed into quaternary salts, whose properties are quite different from those of the parent azahelicenes in terms of the solubility and electronic properties. The synthesis of helicenes can be obtained following different strategies, namely (a) oxidative photocyclization, (b) Diels–Alder reactions, (c) Friedel–Crafts reactions, and (d) metal-mediated reactions. Strategies (a) and (d) have been mainly used to obtain the direct synthesis of functionalized azahelicenes by using appropriate starting materials, bearing functional side substituents compatible with the reaction to be performed.
  • 628
  • 20 Apr 2022
Topic Review
Quinazoline Based HDAC Dual Inhibitors
Quinazolines are the most versatile, ubiquitous and privileged nitrogen bearing heterocyclic compounds with a wide array of biological and pharmacological applications. Most of the anti-cancer agents featuring quinazoline pharmacophore have shown promising therapeutic activity. Histone deacetylases (HDACs) have emerged as an important anti-cancer target in the recent years given its role in cellular growth, gene regulation, and metabolism.
  • 628
  • 20 Jun 2022
Topic Review
Phase Change Materials for Thermal Regulative Wood-Based Products
Wood is an excellent building material or component that has been used all over the world. The rise in energy consumption worldwide, particularly in the building sector, has led to the development of diverse methods to overcome this problem. Embedding phase change material, phase change material (PCM), into the wood has been researched as one of the most effective alternatives of controlling the thermal loads of wood, as it can store and release latent heat energy at a specific temperature range.
  • 628
  • 12 Oct 2022
Topic Review
Degradation Mechanisms of Bioactive Compounds
The bioactive compounds in fruits, vegetables, herbs, and spices are very vulnerable and can be easily degraded by different factors, including enzymes, thermal treatment, pH, oxidation, light, and/or hydrolysis. Some of the main examples of degradation reactions include: oxidation and hydrolysis of vitamin C, oxidation of phenols, flavonoids, glycosides and hydrolysis of esters. Therefore, actions taken for preventing such degradation are critically important not only for producers, but also for consumers, for whom the presence of these compounds is desirable for health-related requirements. In particular, the degradation of bioactive compounds during thermal treatment (e.g., blanching, pasteurization, sterilization and/or drying) represents a severe problem that must be tackled in the food industry. 
  • 628
  • 21 Jun 2023
Topic Review
Titanium Dioxide-Derived Materials with Superwettability
Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Generally, superwettability refers to superhydrophilic, superhydrophobic, superamphiphilic, and superamphiphobic surfaces; the mechanism of the superwettability property can be explained based on the surface structure of materials, surface molecules, and external influencing factors. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. 
  • 627
  • 14 Apr 2021
  • Page
  • of
  • 467
ScholarVision Creations