Topic Review
Agouti (Gene)
The agouti gene encodes the agouti-signaling protein (ASIP), responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte (pigment cell) produces phaeomelanin (a red to yellow pigment), or eumelanin (a brown to black pigment). This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti. In other species such as horses, the agouti gene is responsible for determining which parts of the body will be black. Horses can either have black distributed across its body or can have black only in certain locations such as the tail, ears, mane, and the lower legs. In mice, the agouti gene determines whether the animal will be yellow or grey and brown. The agouti-signaling protein (ASIP) is a competitive antagonist with alpha-Melanocyte-stimulating hormone (α-MSH) to bind with melanocortin 1 receptor (MC1R) proteins. Activation by α-MSH causes production of the darker eumelanin, while activation by ASIP causes production of the redder phaeomelanin. This means that if agouti is expressed then the phenotype will be yellow and if it's not expressed then the phenotype would be grey.
  • 988
  • 08 Nov 2022
Topic Review
Agri-Food Wastes for Bioplastics
Agri-food wastes (such as brewer’s spent grain, olive pomace, residual pulp from fruit juice production, etc.) are produced annually in very high quantities posing a serious problem, both environmentally and economically. These wastes can be used as secondary starting materials to produce value-added goods within the principles of the circular economy. Agri-food waste is produced in large quantities and derives from many sources (from breweries, from the pressing of olives, from the production of fruit and vegetables, etc.). Consequently, the problem of their disposal arises both from the point of view of costs and means. However, precisely because these wastes represent a great added value for the substances they contain and which can be exploited, it is profitable to reuse and recycle them.
  • 729
  • 20 Sep 2022
Topic Review
Agricultural Applications of Superabsorbent Polymer Hydrogels
Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.
  • 896
  • 02 Mar 2023
Topic Review
Agro-Based Polymers Food Packaging
This entry compiles information on biopolymers and natural bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds into film-forming solutions and their influence on the functional properties of biopolymer films. 
  • 1.7K
  • 13 Nov 2020
Topic Review
Agro-Food Waste Valorization for Sustainable Bio-Based Packaging
The increase in the generation of agro-food processing waste, coupled with uncontrolled disposal and inefficient recovery methods, has raised concerns among society, industries, and the research community. This issue is compounded by the accumulation of conventional synthetic packaging. Owing to their significant environmental and economic impacts, the development of sustainable, biocompatible, and biodegradable materials has become an urgent target. In this context, research efforts have been directed toward developing new packaging materials based on renewable sources, such as agro-food waste, contributing to the circular economy concept.
  • 277
  • 17 Feb 2024
Topic Review
AI Algorithms and Material Informatics Tools
The integration of artificial intelligence (AI) algorithms in materials design is revolutionizing the field of materials engineering thanks to their power to predict material properties, design de novo materials with enhanced features, and discover new mechanisms beyond intuition. In addition, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation.
  • 208
  • 08 Sep 2023
Topic Review
AI-Assisted Design-on-Simulation for Life Prediction
Many researchers have adopted the finite-element-based design-on-simulation (DoS) technology for the reliability assessment of electronic packaging. DoS technology can effectively shorten the design cycle, reduce costs, and effectively optimize the packaging structure. However, the simulation analysis results are highly dependent on the individual researcher and are usually inconsistent between them. Artificial intelligence (AI) can help researchers avoid the shortcomings of the human factor. 
  • 968
  • 28 Sep 2021
Topic Review
AI-Based Nano-Scale Material Property Prediction for Li-Ion Batteries
The status quo for techniques used in the discovery of new and novel materials to enhance battery technologies has progressed from expensive and time-consuming empirical trial and error methods to the more recent first principles approach of using quantum mechanics (QM), Monte Carlo simulations and molecular dynamics (MD). QM calculations evaluate electron–electron interactions bby solving the complex Schrödinger equation, thereby enabling accurate results for a wide variety of properties. The emergence of ML, deep learning (DL) and artificial intelligence (AI) has helped alleviate the bottlenecks posed by QM and MD simulations and has made it possible to expand the scope of the search for novel materials in the chemical compound space (CCS) .
  • 245
  • 23 Feb 2024
Topic Review
AIE Material Design Strategy Based on Functional Groups
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. Certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms’ physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. 
  • 447
  • 08 Feb 2023
Topic Review
AIE-Active Photosensitizers
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy.
  • 860
  • 27 May 2022
  • Page
  • of
  • 467
Video Production Service