Topic Review
Polymer Solar Cells Based on PEDOT:PSS Electrodes
Solution-processed polymer solar cells (PSCs) have advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%.
  • 981
  • 10 Dec 2021
Topic Review
Metal–Organic Framework-Based Membranes for Gas Separation
Metal–organic frameworks (MOFs) represent the largest class of materials among crystalline porous materials ever developed, and have attracted attention as core materials for separation technology. Their extremely uniform pore aperture and nearly unlimited structural and chemical characteristics have attracted great interest and promise for applying MOFs to adsorptive and membrane-based separations. 
  • 980
  • 28 Feb 2024
Topic Review
Multidrug Resistant Gram-Negative Bacteria
Antibiotic resistance has increased markedly in Gram-negative bacteria, causing severe infections intractable with traditional drugs and amplifying mortality and healthcare costs. Consequently, to find novel antimicrobial compounds, active on multidrug resistant bacteria, is mandatory. In this regard, cationic antimicrobial peptides (CAMPs)—able to kill pathogens on contact—could represent an appealing solution. However, low selectivity, hemolytic toxicity and cost of manufacturing, hamper their massive clinical application. In the recent years—starting from CAMPs as template molecules—less toxic and lower-cost synthetic mimics of CAMPs, including cationic peptides, polymers and dendrimers, have been developed. Although the pending issue of hemolytic toxicity and biodegradability is still left not completely solved, cationic antimicrobial polymers (CAPs), compared to small drug molecules, thanks to their high molecular weight, own appreciable selectivity, reduced toxicity toward eukaryotic cells, more long-term activity, stability and non-volatility. With this background, an updated overview concerning the state of the art of the main manufactured types of CAPs, active on Gram-negative bacteria, is herein reported, including synthetic procedure and action’s mechanism. Information about the antibacterial activity, advantages and drawbacks of the most appealing compounds was also provided.
  • 980
  • 28 Oct 2020
Topic Review
Cosmetic Science
In June 2020, the long-waited “Regulations on the Supervision and Administration of Cosmetics” (CSAR) was finally issued by the State Council of China, and this regulation will be implemented from 1 January 2021 [1]. CSAR is the first-time revision and replacement of the “Regulations on Hygiene Supervision of Cosmetics” (CHSR), which was published in 1989. During the past 30 years, substantial changes have happened both in the industry and in consumer needs, and the market has increased significantly. According to incomplete statistics, there are more than 1,800,000 valid cosmetic products in China currently in 2020. In addition, new techniques and approaches have appeared, and the concepts of supervision and administration have evolved.
  • 979
  • 27 Dec 2020
Topic Review
PEDOT:PSS/Nonionic WPU
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has the merits of high electrical conductivity and solution processability, and can be dispersed in water. To improve the stretchability of PEDOT:PSS-based transparent electrode films, the intrinsically conducting polymer PEDOT:PSS was blended with highly stretchable nonionic waterborne polyurethane (WPU) and coated on a thermoplastic polyurethane (TPU) film. Nonionic WPU has good compatibility with PEDOT:PSS, without affecting the acidity. 
  • 978
  • 16 Mar 2022
Topic Review
Bioavailability of Lingonberry Polyphenols
Lingonberry (Vaccinium vitis-idaea) is less prevalent in the daily human diet because they are collected from the wild, and plant breeding of lingonberry is still on a small scale. Lingonberries are classed as “superfruits” with the highest content of antioxidants among berries and a broad range of health-promoting effects. Many studies showed various beneficial effects of lingonberries, such as anti-inflammatory, antioxidant, and anticancer activities. Lingonberries have been shown to prevent low-grade inflammation and diet-induced obesity in diabetic animals. Moreover, lingonberry intake has been associated with a beneficial effect on preventing and treating brain aging and neurodegenerative disorders.
  • 978
  • 03 Jun 2021
Topic Review
Halloysite Nanofluids
Nanofluids obtained from halloysite and de-ionized water (DI) were prepared by using surfactants and changing pH for heat-transfer applications. The halloysite nanotubes (HNTs) nanofluids were studied for several volume fractions (0.5, 1.0, and 1.5 vol%) and temperatures (20, 30, 40, 50, and 60 °C). 
  • 977
  • 20 Feb 2021
Topic Review
Carbon Nanotube Electrodes for Flexible Supercapacitors
Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. 
  • 977
  • 19 Aug 2022
Topic Review
Concentration Cells Corrosion
In marine environments, microbial attacks on metallic materials result in microbiologically influenced corrosion (MIC), which could cause severe safety accidents and high economic losses. To date, MIC of a number of metallic materials ranging from common steels to corrosion-resistant ferrous alloys has been reported. The MIC process has been explained based on (1) bio-catalyzed oxygen reduction; (2) kinetics alternation of the corrosion process by increasing the mass transport of the reactants and products; (3) production of corrosive substances; and (4) generation of auxiliary cathodic reactants.
  • 977
  • 16 Sep 2022
Topic Review
Chitosan/Graphene Oxide Composite Films
The healing of wounds is still one of the challenging clinical problems for which an efficient and fast treatment is needed. Therefore, recent studies have created a new generation of wound dressings which can accelerate the wound healing process with minimum side effects. Chitosan, a natural biopolymer, is an attractive candidate for preparing biocompatible dressings. The biodegradability, non-toxicity and antibacterial activity of chitosan have made it a promising biopolymer for treating wounds. Graphene oxide has also been considered by researchers as a non-toxic, inexpensive, and biocompatible material for wound healing applications. This review discusses the potential use of chitosan/graphene oxide composite films and their application in wound dressing and drug delivery systems. 
  • 974
  • 02 Sep 2021
  • Page
  • of
  • 467
ScholarVision Creations