Topic Review
CNT-Based Chemical Sensors
Carbon nanotubes (CNTs) combine high electrical conductivity with high surface area and chemical stability, which makes them very promising for chemical sensing. 
  • 1.2K
  • 10 Feb 2022
Topic Review
Surface Acoustic Wave Sensors Materials
Since their development, surface acoustic wave (SAW) devices have attracted much research attention due to their unique functional characteristics, which make them appropriate for the detection of chemical species. The scientific community has directed its efforts toward the development and integration of new materials as sensing elements in SAW sensor technology with a large area of applications.
  • 1.2K
  • 28 Jun 2021
Topic Review
Naphthoquinone and Anthraquinone
Naphthoquinone (NQ) and Anthraquinone (AQ) compounds have gained considerable interest from researchers in diverse pharmacological settings due to their biological activities, making them attractive building blocks for drug development. The literature contains many examples of NQ and AQ-based compounds, mainly derived from natural sources or synthetic, that also demonstrated promising properties against diverse AD targets. The NQ or AQ scaffolds may contribute to the biological effect against AD as main units or significant substructures. In particular, hybrid- and fragment-based drug design strategies allowed the identification of multifunctional NQ and AQ molecules, which displayed antioxidant activity and the ability to inhibit ChEs, BACE, Aβ and tau aggregation. 
  • 1.2K
  • 19 Jan 2021
Topic Review
Dapsone Imine Derivatives
Dapsone (DDS) is an antibacterial drug with well-known antioxidant properties. However, the antioxidant behavior of its derivatives has not been well explored. In the present work, the antioxidant activity of 10 dapsone derivatives 4-substituted was determined by an evaluation in two in vitro models (DPPH radical scavenging assay and ferric reducing antioxidant power). These imine derivatives 1–10 were obtained through condensation between DDS and the corresponding aromatic aldehydes 4-substuited. Three derivatives presented better results than DDS in the determination of DPPH (2, 9, and 10). Likewise, we have three compounds with better reducing activity than dapsone (4, 9, and 10). In order to be more insight, the redox process, a conceptual DFT analysis was carried out. Molecular descriptors such as electronic distribution, the total charge accepting/donating capacity (I/A), and the partial charge accepting/donating capacity (ω+/ω−) were calculated to analyze the relative donor-acceptor capacity through employing a donor acceptor map (DAM). The DFT calculation allowed us to establish a relationship between GAPHOMO-LUMO and DAM with the observed antioxidant effects. According to the results, we concluded that compounds 2 and 3 have the lowest Ra values, representing a good antioxidant behavior observed experimentally in DPPH radical capturing. On the other hand, derivatives 4, 9, and 10 display the best reducing capacity activity with the highest ω− and Rd values. Consequently, we propose these compounds as the best antireductants in our DDS imine derivative series.
  • 1.2K
  • 08 Oct 2021
Topic Review
Carbon Nanotubes
Carbon nanotubes are a quasi-one-dimensional nanomaterial having excellent compatibility with cementitious material. Recently several research carried out utilising different types of Carbon nanotubes (Single wall carbon nanotube, multiwall carbon nanotube, -COOH and -OH functionalised carbon nanotube etc.) to investigate its influences in terms of flowability, microstructure, mechanical, and durability properties. CNT is chemically inert material but addition of small doses of CNTs can significantly improve the mechanical and microstructural properties of concrete/cementitious composites. CNT act as nucleating agents and promote the higher growth of C-S-H. However, improvement of mechanical, microstructural  and durability properties depends on CNTs concentration, physical properties and type of CNTs. 
  • 1.2K
  • 27 Oct 2020
Topic Review
Lanthanide-Doped Nanoparticles
Lanthanide-doped nanoparticles exhibit unique luminescent properties, including tunable luminescence emission, narrow emission width, excellent optical stability, and long lifetimes from microseconds to milliseconds. Lanthanide-doped nanomaterials with long lifetimes are independent with background fluorescence interference and biological tissue depth.
  • 1.2K
  • 22 Feb 2022
Topic Review
Functionally Graded Thermal Sprayed Coatings
       The manufactured industrial pieces have often the external surfaces being in contact with harsh environment. The turbine blades are submitted to hot gas, the implanted prostheses to body liquids, etc. The protection of these surfaces can be realized using films and coatings. The latters have an important function of rendering the life in service of industrial piece longer, belong however, generally, to another group of materials with very different properties than the piece itself. For example, ceramic coatings are applied frequently on metal and alloys and some intermediate layers should be added between substrate and top coating. This is the concept of "functionally graded coatings" reviewed for the technology of thermal spraying in present entry basing onto paper Appl. Sci. 2020, 10, 5153; doi:10.3390/app10155153. The excerpt of this paper shows the chapters related to the applications of functionally graded coatings and their perspectives of development together with selected cited references.
  • 1.2K
  • 27 Dec 2020
Topic Review
Glass Crystalline Materials
Glass crystalline materials (GCM) are composite solids consisting of both vitreous and crystalline phases. The major component can be the crystalline phase with a vitreous phase acting as a binding agent or alternatively the vitreous phase can be the major component, with crystalline particles dispersed in the glass matrix. 
  • 1.2K
  • 27 Apr 2021
Topic Review
PH-Sensitive Cubosome Liquid Crystalline Nanocarriers
Cubosomes are soft biocontinuous nanoparticles whose 3D geometry can be engineered to render the structures responsive to pH variations, which is of large interest to the production of efficient drug delivery materials. We have reviewed the literature to provide a state of the art in this regard and shed lights on prominent perspectives and strategies for pH-sensitive cubosomes development, taking advantage of the pH changes of the biological media at targeted application sites.
  • 1.2K
  • 27 Oct 2020
Topic Review
Microfluidics in Gas Sensing
Rapid, real-time, and non-invasive identification of volatile organic compounds (VOCs) and gases is an increasingly relevant field, with applications in areas such as healthcare, agriculture, or industry. Ideal characteristics of VOC and gas sensing devices used for artificial olfaction include portability and affordability, low power consumption, fast response, high selectivity, and sensitivity. Microfluidics meets all these requirements and allows for in situ operation and small sample amounts, providing many advantages compared to conventional methods using sophisticated apparatus such as gas chromatography and mass spectrometry. This review covers the work accomplished so far regarding microfluidic devices for gas sensing and artificial olfaction. Systems utilizing electrical and optical transduction, as well as several system designs engineered throughout the years are summarized, and future perspectives in the field are discussed.
  • 1.2K
  • 20 Oct 2020
  • Page
  • of
  • 465
Video Production Service