Topic Review
Direct Synthesis of Silicon Compounds
The development of industrial organosilicon chemistry, and thus the development of silicon chemistry, is partly related to the discovery of the direct process of organosilanes synthesis in the 1940s, which allowed the production of organosilanes and silicone polymers on a large scale, and resulted in the development of new technologies to produce organosilicon monomers and polymers. The direct synthesis process, also known as the Müller–Rochow process, is one of the best-known industrial processes for obtaining organosilicon compounds, and has been the basis of the silicone industry.
  • 1.3K
  • 08 Mar 2023
Topic Review
Nanocellulose Hybrids with Magnetic Nanoparticles
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In particular, superparamagnetic iron oxides nanoparticles with very small size (SPIONs) are non-toxic in small concentration, biodegradable and biocompatible and display a high magnetic resonance imaging (MRI) contrast effect. However, for biomedical applications, SPIONs need to be covered by a biocompatible shell to prevent aggregation or degradation and to delay the immune response. Nanocellulose proved to be an excellent biocompatible matrix for SPIONs in MRI applications.
  • 1.3K
  • 08 Sep 2020
Topic Review
Amazonian Bacuri (Platonia insignis Mart.)
Bacuri (Platonia insignis Mart) is a species from the Clusiaceae genus. Its fruit pulp is commonly used in South America in several food products, such as beverages, ice cream and candies. Only the pulp of the fruit is used, and the peels and seeds are considered waste from these industries.
  • 1.3K
  • 29 Mar 2022
Topic Review
Self-Assembled III-V Semiconductor Quantum Dots
A fundamental understanding of the growth of semiconductors is essential for the optimization of quantum dot-based optoelectronic devices. Droplet epitaxy has proven to be the successful versatile growth method for instance growing quantum dots with a small fine structure splitting for quantum information technology. Precise control and tuning of the quantum dots for various applications is only possible through a detailed understanding of the growth mechanism at the atomic level, which creates the need for atomic-scale structural and composition characterization. We present an overview of the results of detailed structural and composition analysis by cross-sectional scanning tunneling microscopy and atom probe tomography of quantum dots grown by self-assembled droplet epitaxy where we focus mainly on strain-free GaAs/AlGaAs and strained InAs/InP QDs.
  • 1.3K
  • 19 Jan 2021
Topic Review
Solar Energy Systems into Seawater Desalination
Solar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. 
  • 1.3K
  • 29 Sep 2022
Topic Review
Chorioallantoic Membrane Assay in Nanotoxicology
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation.
  • 1.3K
  • 08 Dec 2020
Topic Review
Films and Coatings Deposition Methods
The modern methods of films and coatings deposition find many new application in industry and technology. The methods are mainly physical and categorized by the species participating in deposits build-up as: (i) atomistic; (ii) granular; and (iii) bulk. The examples of emerging methods developed by the author and belonging to each category are briefly discussed.
  • 1.3K
  • 11 Aug 2023
Topic Review
Hyaluronic Acid for Tissue Engineering
Polysaccharides such as hyaluronic acid (HA) which is omnipresent in the human body and exert pleiotropic biological functions such as tissue repair and tissue regeneration, may be exploited for cosmetics development, esthetic medicine, tissue engineering and regenerative medicine. In this work, the authors describe the excellent biocompatibility and biodegradability of HA-derived hydrogels with make them ideal materials for tissue engineering applications.
  • 1.3K
  • 27 May 2021
Topic Review
Smart ECM-Based Electrospun Biomaterials
Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the “click” concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the “click” reactions. Here, we provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials and propose a design of a smart ECM-based electrospun system suitable for skeletal muscle tissue regeneration.
  • 1.3K
  • 24 Sep 2020
Topic Review
Applications for Nanotechnology in Endodontics
Nanotechnology has been utilized in several different parts of dentistry. Nanomaterials can be employed as irrigation, intracanal medicament, obturation materials and sealers.
  • 1.3K
  • 11 Aug 2022
  • Page
  • of
  • 465
Video Production Service