Topic Review
Three-finger Toxin
Three-finger toxins (abbreviated 3FTx) are a protein superfamily of small toxin proteins found in the venom of snakes. Three-finger toxins are in turn members of a larger superfamily of three-finger protein domains which includes non-toxic proteins that share a similar protein fold. The group is named for its common structure consisting of three beta strand loops connected to a central core containing four conserved disulfide bonds. The 3FP protein domain has no enzymatic activity and is typically between 60-74 amino acid residues long. Despite their conserved structure, three-finger toxin proteins have a wide range of pharmacological effects. Most members of the family are neurotoxins that act on cholinergic intercellular signaling; the alpha-neurotoxin family interacts with muscle nicotinic acetylcholine receptors (nAChRs), the kappa-bungarotoxin family with neuronal nAChRs, and muscarinic toxins with muscarinic acetylcholine receptors (mAChRs).
  • 647
  • 18 Oct 2022
Topic Review
Biogenic Silver Nanoparticles for Their Biomedical Applications
Nanoparticles can be synthesized through physical, chemical, and biological routes, where biologically synthesized nanoparticles are also referred to as biogenic-synthesized nanoparticles or bionanoparticles. Bionanoparticles exploit the inherent reducing property of biological entities to develop cost-effective, non-toxic, time-efficient, sustainable, and stable nanosized particles. There is a wide array biomedical focus on metallic nanoparticles, especially silver nanoparticles, due to their distinctive physiochemical properties making them a suitable therapeutic molecule carrier. This research aims to provide a broad insight into the various classes of living organisms that can be exploited for the development of silver nanoparticles, and elaboratively review the interdisciplinary biomedical applications of biogenically synthesized silver nanoparticles in health and life sciences domains.
  • 647
  • 13 Mar 2023
Topic Review
Molecular Weight of Polyamides
Polyamides (PAs) undergo local environmental degradation, leading to a decline in their mechanical properties over time. PAs can experience various forms of degradation, such as thermal degradation, oxidation, hydrothermal oxidation, UV oxidation, and hydrolysis. In order to better comprehend the degradation process of PAs, it is crucial to understand each of these degradation mechanisms individually.
  • 647
  • 09 Jan 2024
Topic Review
Polymeric Wastewater Purification Membranes
Over the past few years, polymeric membranes are widely used for applications in separation technologies. They show better flexibility, pore formation mechanism, thermal and chemical stability, and demand less area for installation. Wastewater purification is among the most desirable application of these membranes. In comparison to conventional separation materials, membranes offer economical and efficient treatment. The polymers employed in the synthesis of each membrane are selectively chosen to enhance the optimal performance in wastewater purification.
  • 646
  • 09 Jul 2021
Topic Review
Sources and Absorption of Resveratrol
Polyphenols are secondary metabolites produced by plants and also found in many natural products, such as fruit and vegetables, and their derivatives, such as tea, coffee, olive oil, and wine. Polyphenols are well known for their antioxidant properties, which confer to them health-beneficial effects. Among them, resveratrol is probably one of the most investigated molecules. It was first described in 1940 by Michio Takaoka, a Japanese student who was investigating extracts from traditional medicinal plants and called it “resveratrol” because the molecule had been extracted from the roots of Veratrum grandiflorum (white hellebore) and presented the skeleton of resorcinol in its molecular structure. The extract from this plant was exploited for treating several allergic and inflammatory diseases, among others. However, this molecule did not attract much interest until 1997, when Jang and colleagues published an article regarding its cancer chemopreventive activity. Resveratrol is the common name for 3,5,4′-trihydroxy-trans-stilbene, a natural phytoalexin derived from phenylpropanoids, that is synthesized in plants under stress conditions, such as infections or UV exposure. 
  • 646
  • 14 Dec 2021
Topic Review
Graphene and Carbon-Based Additives
Graphene exhibits remarkable and unparalleled qualities, making it highly desirable for tribological applications due to its exceptionally high mechanical strength, outstanding conductivity, low shear strength, and high surface area. The tribological properties of graphene are controlled by various techniques used for its synthesis and the presence of functional groups, such as residual oxygen functionalities, thickness and lateral dimensions of each sheet, number of atomic lamellae in a sheet, and structural flaws.
  • 646
  • 17 Jan 2023
Topic Review
Synthesis of Polypeptides with Activated Amino Acid Monomers
Commonly, three different synthetic pathways are used to prepare peptides in the laboratory: via the polymerization of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs); via various stepwise coupling reactions of α-amino acids, such as during solid phase peptide synthesis (SPPS); or via recombinant DNA techniques for expressing peptides in microorganisms. Polypeptides that are synthesized through SPPS have controlled primary sequences and can fulfill certain functionalities, but it is difficult to create high molecular weight polypeptides above 100 residues, due to the inevitable side reactions. Recombinant DNA techniques can create polypeptides with specific sequences and high molecular weights. Moreover, they allow for peptide production on a very large scale. However, specialized equipment, which is not readily available in most synthetic laboratories, is needed for this method. The polymerization of activated amino acid monomers enables the formation of bioactive and high molecular weight polypeptides in a facile and expedient manner. The process begins with the conversion of amino acids into the corresponding activated monomers; afterwards, polymerization is initiated in the presence of certain initiators. Although polypeptides that are synthesized in this way lack precise sequence control, their synthetic advantages make this method attractive and economical for synthesizing polypeptides in large quantities.
  • 645
  • 12 May 2022
Topic Review
The Catalytic Interface Layer for Bipolar Membrane
Bipolar membranes, a new type of composite ion exchange membrane, contain an anion exchange layer, a cation exchange layer and an interface layer. The interface layer or junction is the connection between the anion and cation exchange layers. Water is dissociated into protons and hydroxide ions at the junction, which provides solutions to many challenges in the chemical, environmental and energy fields. By combining bipolar membranes with electrodialysis technology, acids and bases could be produced with low cost and high efficiency. The interface layer or junction of bipolar membranes (BPMs) is the connection between the anion and cation exchange layers, which the membrane and interface layer modification are vital for improving the performance of BPMs.
  • 645
  • 02 Sep 2022
Topic Review
Electrochemical Bromofunctionalization of Alkenes
The electrochemical generation of highly reactive and hazardous bromine under controlled conditions as well as the reduction of surplus oxidizers and reagent waste has placed electrochemical synthesis in a highlighted position. In particular, the electrochemical dibromination and bromofunctionalization of alkenes and alkynes have received significant attention, as the forming of synthetically important derivatives can be generated from bench-stable and safe bromide sources under “green” conditions.
  • 645
  • 17 Nov 2022
Topic Review
Fabrication of SiC Membranes
The scale of research for developing and applying silicon carbide (SiC) membranes for gas separation has rapidly expanded over the last few decades. The precursor-derived ceramic approaches for preparing SiC membranes include chemical vapor deposition (CVD)/chemical vapor infiltration (CVI) deposition and pyrolysis of polymeric precursor. Generally, SiC membranes formed using the CVD/CVI deposition route have dense structures, making such membranes suitable for small-molecule gas separation. On the contrary, pyrolysis of a polymeric precursor is the most common and promising route for preparing SiC membranes, which includes the steps of precursor selection, coating/shaping, curing for cross-linking, and pyrolysis. Among these steps, the precursor, curing method, and pyrolysis temperature significantly impact the final microstructures and separation performance of membranes.
  • 645
  • 19 Feb 2023
  • Page
  • of
  • 466
ScholarVision Creations