Topic Review
CRM for Additive Manufacturing
The term “critical raw materials” (CRMs) refers to various metals and nonmetals that are crucial to Europe’s economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.
  • 768
  • 05 May 2021
Topic Review
Triazine-Based Liquid Crystal Dendrimers
Most triazine-based liquid crystalline (LC) dendrimers reported thus far are the main-chain LC macromolecules with long flexible chains at their periphery and attached to internal rigid or semi-rigid frameworks. Their formation of mesogenic phases often depends on the intermolecular face-to-face π–π interactions between dendritic molecules, which are unusual. Their mesogenic phases can also be formed by incorporation of mesogenic units to the dendritic skeletons through long flexible chains, as most side-chain LC dendrimers, in which the peripheral mesogenic units generally play the important roles. For main-chain triazine-based dendrimers, their morphology is maintained by restricted freedom of rigid or semi-rigid connecting units, and their formations of LC phases are therefore not straightforward to be controlled.
  • 767
  • 25 Aug 2021
Topic Review
Graphene-Based Nanomaterials in Environmental Analysis
Sample preparation is an essential and preliminary procedure of most chemical analyses. Due to the sample diversity, the selection of appropriate adsorbents for the effective preparation and separation of different samples turned out to be important for the methods. By exploiting the rapid development of material science, some novel adsorption materials, especially graphene-based nanomaterials, have shown supremacy in sample pretreatment. In this review, a discussion between these nanomaterials will be made, as well as some basic information about their synthesis. The focus will be on the different environmental applications that use these materials.
  • 767
  • 11 May 2021
Topic Review
MS/MS-Based Molecular Networking
Natural products (NPs) have historically played a primary role in the discovery of small-molecule drugs. However, due to the advent of other methodologies and the drawbacks of NPs, the pharmaceutical industry has largely declined in interest regarding the screening of new drugs from NPs since 2000. There are many technical bottlenecks to quickly obtaining new bioactive NPs on a large scale, which has made NP-based drug discovery very time-consuming, and the first thorny problem faced by researchers is how to dereplicate NPs from crude extracts. Remarkably, with the rapid development of omics, analytical instrumentation, and artificial intelligence technology, in 2012, an efficient approach, known as tandem mass spectrometry (MS/MS)-based molecular networking (MN) analysis, was developed to avoid the rediscovery of known compounds from the complex natural mixtures. 
  • 767
  • 03 Jan 2023
Topic Review
Processing Technologies for Thin Kesterite CZTS Absorber Films
Solar cells based on Cu(In, Ga)(S, Se)2 (CIGS) and CdTe thin-film solar cells have already reached the commercial stage, having an efficiency of 23.4% for CIGS and 21.0% for CdTe. However, their marketability has stagnated. A promising solution for a non-toxic and commercially attractive absorber for photovoltaic applications is offered by the family of kesterite semiconductor materials such as copper–zinc–tin–sulfide (with the chemical formula Cu2ZnSnS4) (CZTS) and copper–zinc–tin–selenide (with the chemical formula Cu2ZnSnSe4)(CZTSe) and their alloy family copper–zinc–tin–sulfo–selenide (Cu2ZnSn(Sx,Se1−x)4 (CZTSSe), where 0 ≤ x ≤ 1).
  • 767
  • 02 Dec 2022
Topic Review
Ultracentrifugation Techniques for Nanoparticles Ordering
A centrifugal field can provide an external force for the ordering of nanoparticles. Especially with the knowledge from in-situ characterization by analytical (ultra)centrifugation, nanoparticle ordering can be rationally realized in preparative (ultra)centrifugation. This study summarizes the work back to the 1990s, where intuitive use of centrifugation was achieved for the fabrication of colloidal crystals to the very recent work where analytical (ultra)centrifugation is employed to tailor-make concentration gradients for advanced materials. This review is divided into three main parts. In the introduction part, the history of ordering microbeads in gravity is discussed and with the size of particles reduced to nanometers, a centrifugal field is necessary. In the next part, the research on the ordering of nanoparticles in analytical and preparative centrifugation in recent decades is described. In the last part, the applications of the functional materials, fabricated from centrifugation-induced nanoparticle superstructures are briefly discussed.
  • 766
  • 05 Feb 2021
Topic Review
Titanium Foils
Titanium membranes used as barrier element in guided bone regeneration procedures. These membranes prevent the penetration of epithelial cells and fibroblasts and allow access to the bone defect of osteogenic and stem cells originating from the native bone. They have different formats, from a titanium sheet to be formed intraoperatively to a custom-made occlusive barrier from a previous computed tomography scan of the bone defect.
  • 766
  • 03 Dec 2020
Topic Review
Collagen Type I Biomaterials
Collagen type I is the main organic constituent of the bone extracellular matrix and has been used for decades as scaffolding material in bone tissue engineering approaches when autografts are not feasible. Polymeric collagen can be easily isolated from various animal sources and can be processed in a great number of ways to manufacture biomaterials in the form of sponges, particles, or hydrogels, among others, for different applications. Despite its great biocompatibility and osteoconductivity, collagen type I also has some drawbacks, such as its high biodegradability, low mechanical strength, and lack of osteoinductive activity. Therefore, many attempts have been made to improve the collagen type I-based implants for bone tissue engineering. 
  • 766
  • 20 Apr 2021
Topic Review
Root-Analogue Implants
 It is estimated that 10% of the world’s population will need a dental implant in their lifetime. Despite all the advances in the comprehension of dental implant designs, materials and techniques, traditional implants still have many limitations. Customized root-analogue implants are, therefore, gaining increased interest in dental rehabilitation and are expected to not only preserve more hard and soft tissues but also avoid a second surgery and improve patient overall satisfaction. 
  • 766
  • 17 May 2021
Topic Review
Propolis in Protecting the Skeleton
Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities.
  • 765
  • 02 Jun 2021
  • Page
  • of
  • 465
ScholarVision Creations