Topic Review
Turbulence Simulation Approaches
Turbulent flow can be numerically resolved with different levels of accuracy. Many numerical approaches for solving turbulence have been proposed, such as the Reynolds-Averaged Navier–Stokes (RANS), the Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS) approaches. Among these numerical methods, the RANS approach, specifically the Eddy Viscosity Model (EVM), is widely used for calculating turbulent flows thanks to its relatively high accuracy in predicting the mean flow features and its more limited computational demands. However, this approach suffers from several weaknesses, e.g., compromised accuracy and uncertainties due to assumptions in the model construction and insufficient incorporation of the fluid physics. In the LES approach, the whole eddy range is separated into two parts, namely, the large-scale eddy and subgrid-scale (SGS) eddy. The former can be directly resolved, while the latter is computed using the SGS model. As the computing power rapidly increases, this approach is extensively used to study turbulence physics and to resolve low-to-medium Reynolds number flows.
  • 250
  • 13 Sep 2021
Topic Review
Tube High-Pressure Shearing
Tube high-pressure shearing (t-HPS) is a deformation processing, in which a tubular sample is subjected to azimuthal shearing under a hydrostatic pressure. The shear plane is in parallel to the cylindrical surface of the tube, and the shear direction is in the azimuthal direction. 
  • 125
  • 25 Oct 2021
Topic Review
Trends and Challenges in the Indian Steel Industry
India is the 4th largest iron ore producer and the 3rd largest coal producer in the world. Coal is also identified as one of the major sectors of “Make in India”, which is an initiative by the Government of India launched by the prime minister. India is also the world’s largest producer of sponge iron: about 37 million tons per annum. 
  • 108
  • 22 Apr 2022
Topic Review
Stir Casting Routes for Metal Matrix Syntactic Foams
Metal matrix syntactic foams (MMSFs) are advanced lightweight materials constituted by a metallic matrix and a dispersion of hollow and/or porous fillers. Physical and mechanical properties can be fitted regarding matrix and filler properties and processing parameters. Their properties make them potential materials for sectors where density is a limiting parameter, such as transport, marine, defense, aerospace, and engineering applications. MMSFs are mainly manufactured by powder metallurgy, infiltration, and stir casting techniques. Stir casting techniques (SCTs) are low-cost and industrially scalable approaches. Critical limitations of SCTs are buoyancy of fillers, corrosion of processing equipment, premature solidification of molten metal during mixing, cracking of fillers, heterogeneous distribution, and limited incorporation of fillers. Efforts to overcome these limitations have led to the development of new techniques and to obtain MMSFs with improved properties.
  • 106
  • 19 Apr 2022
Topic Review
Steel Structural Property Correlation
The behaviour of plain carbon, as well as, structural steel is qualitatively different at different regimes of strain rates and temperature when they are subjected to hot-working and impact-loading conditions. Ambient temperature and carbon content are the leading factors governing the deformation behaviour and substructural evolution of these steels.
  • 102
  • 29 Jul 2022
Topic Review
Sn on Ag-Based Brazing Filler Metals
Ag-based brazing filler metals containing Sn have been widely applied in many engineering fields. By summarizing the effects of Sn on the melting temperature, wettability and microstructure, and mechanical properties of the filler metals, the Sn element can significantly decrease the melting point and improve the wettability, and proper addition of Sn can optimize the microstructure and improve the comprehensive properties of the filler metals, while excessive addition of Sn will form brittle IMCs and decrease the mechanical properties of the filler metals.
  • 118
  • 29 Nov 2021
Topic Review
Roll Bonding Processes
The roll bonding (RB) process involves joining of two or more sheets of similar or dissimilar materials at various temperatures. The process requires rolling through a pair of rollers under adequate pressure resulting in the bonding of sheets. The process is categorized into three types, i.e., cold, hot, and warm roll bonding based on the ranges of the processing temperature which in turn is related to the recrystallization temperature.
  • 492
  • 03 Sep 2021
Topic Review
Residual Stress Impingement Methods and Environmental Fracture Susceptibility
Metallic components undergo stress due to externally applied forces and/or internal residual forces, with the latter often originating from thermally induced deformation during production or from the forming and machining processes. Over time in service, these stresses may act in concert with the surrounding environment, component geometry, surface defects, corrosion, and more to induce subcritical damage in the form of fatigue, corrosion fatigue, or environmentally assisted cracking (EAC). To combat such degradation, numerous residual stress impingement (RSI) methods have been developed with varying levels of efficacy and ease of use. This entry summarizes the benefits and detriments of leading RSI treatments towards corrosion, corrosion fatigue, and EAC in a range of engineering alloys as a function of material hardness. 
  • 103
  • 19 Nov 2021
Topic Review
Properties of Wire Arc-Sprayed Fe-Based Coatings
Among different thermal spraying methods, arc-spraying has been widely used due to its low operating costs and high deposition efficiency. The rapid progress of cored wire technology in arc-spraying has increased possibilities for the preparation of new Fe-based coating materials with enhanced properties by adding reinforcement particles and alloying elements to suit the different applications. 
  • 191
  • 09 Mar 2022
Topic Review
Production of Electrolytic Manganese Dioxide
The ferromanganese (FeMn) alloy is produced through the smelting-reduction of manganese ores in submerged arc furnaces. This process generates large amounts of furnace dust that is environmentally problematic for storage. Due to its fineness and high volatile content, this furnace dust cannot be recirculated through the process, either. Conventional MnO2 production requires the pre-reduction of low-grade ores at around 900 °C to convert the manganese oxides present in the ore into their respective acid-soluble forms; however, the furnace dust is a partly reduced by-product. A hydrometallurgical route is proposed to valorize the waste dust for the production of battery-grade MnO2. By using dextrin, a cheap organic reductant, the direct and complete dissolution of the manganese in the furnace dust is possible without any need for high-temperature pre-reduction. The leachate is then purified through pH adjustment followed by direct electrowinning for electrolytic manganese dioxide (EMD) production. An overall manganese recovery rate of >90% is achieved. 
  • 962
  • 08 Jul 2021
  • Page
  • of
  • 5