Topic Review
The Impact of Microplastics on Global Food Production
Microplastics (MPs), a new class of pollutants, are extremely varied and their effects are particular to each organism, making the qualitative assessment and evaluation of their effects on the global food industry extremely complex. MPs are present in air, earth, and water, and hence can access all sectors of the food production industry.
  • 116
  • 29 Nov 2023
Topic Review
Cognitive Soil Digital Twin for Monitoring Soil Ecosystem
The digital twin can seamlessly integrate a multitude of sensor data sources, including field Internet of Things sensors, remote sensing data, field measurements, digital cartography, surveys, and other Earth observation datasets. By virtue of its duality, this digital counterpart facilitates data organisation and rigorous analytical exploration, unravelling the intricacies of physical, chemical, and biological soil constituents while discerning their intricate interrelationships and their impact on ecosystem services. Its potential extends beyond mere data representation, acting as a versatile tool for scenario analysis and enabling the visualisation of diverse environmental impacts, including the effects of climate change and transformations in land use or management practices. Beyond academic circles, the digital twin’s utility extends to a broad spectrum of stakeholders across the entire quadruple helix, encompassing farmers and agronomists, soil researchers, the agro-industry, and policy-makers. By fostering collaboration among these stakeholders, the digital twin catalyses informed decision-making, underpinned by data-driven insights. Moreover, it acts as a testbed for the development of innovative sensors and monitoring frameworks, in addition to providing a platform that can educate users and the broader public using immersive and innovative visualisation tools, such as augmented reality. This innovative framework underscores the imperative of a holistic approach to soil ecosystem monitoring and management, propelling the soil science discipline into an era of unprecedented data integration and predictive modelling, by harnessing the effects of climate change towards the development of efficient decision-making.
  • 240
  • 01 Nov 2023
Topic Review
Fundamental Principles of EM38 and MK2 Sensors
Soil salinization and its detrimental agricultural, environmental, and socioeconomic impact over extended regions represent a major global concern that needs to be addressed. The sustainability of agricultural lands and the development of proper mitigation strategies require effective monitoring and mapping of the saline areas of the world. Therefore, robust modeling techniques and efficient sensors that assess and monitor the spatial and temporal variations in soil salinity within an area, promptly and accurately, are essential.
  • 281
  • 30 Oct 2023
Topic Review
Plastics in Agricultural Soils
Plastics, especially microplastics, are a diverse group of polymer-based particles, currently emerging as a global environmental threat—plastic pollution. 
  • 163
  • 18 Oct 2023
Topic Review
The Effect of Biochar on Soil Properties
Biochar, a product of biomass pyrolysis, is recognized for its positive effects on soil fertility and carbon sequestration. Biochar acts as a soil conditioner, improving physical, chemical, and biological properties and enhancing soil fertility and crop yield. Furthermore, it aids in mitigating climate change by sequestering carbon dioxide. However, the long-term behavior of biochar and its interactions with various factors require further field research for optimal utilization, as the aging process of biochar in soil is complex, involving physical, chemical, and biological interactions that influence its impact on the agroecosystem.
  • 145
  • 24 Aug 2023
Topic Review
Soil, Humipedon, Forest Life and Management
Three sections (Humipedon, Copedon and Lithopedon) were recognized in the soil profile. It was then possible to link the first and most biologically active section to the characteristics of the environment and soil genesis. In particular, it is now possible to distinguish organic horizons, mainly produced by arthropods and enchytraeids in cold and acidic or dry and arid environments, from organo-mineral horizons produced by earthworms in more temperate and mesotrophic environments. Each set of horizons can be associated with a humus system or form, with important implications for forestry. Anecic/endogeic earthworms and Mull or Amphi systems are more abundant in the early and late stages of sylvogenesis; by completely recycling litter, earthworms accelerate the availability of organic and inorganic soil nutrients to roots and pedofauna. On the other hand, arthropods and Moder or Tangel systems characterize the intermediate stages of sylvogenesis, where thickening in the organic horizons and the parallel impoverishment/reduction in the underlying organo-mineral horizons are observed. Recognizing the humus system at the right spatial and temporal scale is crucial for the biological management of a forest.
  • 389
  • 31 Jul 2023
Topic Review
Sources of Bioavailable Water in Desert Ecosystems
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions.
  • 258
  • 24 Jul 2023
Topic Review
Building the Profile of Soils' Water Storage Capacity
By taking the soil moisture as a proxy in the modelling, a neural network is designed to capture those impact factors of soil water storage capacity and their nonlinear interaction implicitly without knowing the underlying soil hydrologic processes. An internal vector of the proposed neural network assimilates the soil moisture response to meteorological conditions and is regulated as the profile of the soil water storage capacity. Different from static single value indicators, the profile vector can describe the amount of water that a soil can hold under various moisture levels over a range of time periods. Moreover, the trained model can be deployed as an alternative to the expensive sensor networks for continuous soil moisture monitoring.
  • 203
  • 27 Jun 2023
Topic Review
Cover Crops as a Soil Water Management Strategy
Cover crops can play a more prominent role in water management; however, the more widespread use of cover crops may be hindered by the inconsistencies of experimental data demonstrating cover crop effects on soil water retention, as well as cover crop effect inconsistencies arising from complex interactions between soil carbon, water, and land management. 
  • 363
  • 16 Jun 2023
Topic Review
Ground-Penetrating Radar in Soil Studies
Information on the spatiotemporal variability of soil properties and states within the agricultural landscape is vital to identify management zones supporting precision agriculture (PA). Ground-penetrating radar (GPR) and electromagnetic induction (EMI) techniques have been applied to assess soil properties, states, processes, and their spatiotemporal variability. 
  • 7.3K
  • 14 Jun 2023
  • Page
  • of
  • 9