Topic Review
3D Printing Technologies in Dentistry
3D-printing application in dentistry not only enables the manufacture of patient-specific devices and tissue constructs, but also allows mass customization, as well as digital workflow, with predictable lower cost and rapid turnaround times.
  • 867
  • 16 Sep 2022
Topic Review
Food Bio-Based Packaging
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging.
  • 863
  • 27 Oct 2022
Topic Review
Polymeric Pipeline Coatings Time-Dependent Performance
The barrier performance of organic coatings is a direct function of mass transport and long-term stability of the polymeric structure. A predictive assessment of the protective coating cannot be conducted a priori of degradation effects on transport. Epoxy-based powder coatings are an attractive class of coatings for pipelines and other structures because application processing times are low and residual stresses between polymer layers are reduced. 
  • 857
  • 27 May 2021
Topic Review
Agarose Hydrogels
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments.
  • 852
  • 26 May 2023
Topic Review
Historical Perspective on Membrane Science and Technology
Over the last few decades, considerable effort has been devoted to developing better membranes and extending their range of applications to different areas. Membrane processes already have an established role in gas separation and water treatment, and their applications in the food, pharmaceutical, and health areas have been continuously increasing. In the last few years, membrane processes proved to have a key role in biorefinery and bioenergy production processes, namely for process intensification and the recovery and purification of valuable products. Membranes are also a crucial component of electrochemical energy conversion devices, including fuel cells and electrolysers. Moreover, the growing environmental concerns have drawn attention to the use of fossil-based polymers and toxic solvents for membrane fabrication. Therefore, the development of new membranes, using polymers from renewable sources and more sustainable fabrication methods, is being pursued.
  • 850
  • 23 Feb 2022
Topic Review
Microcellular Injection Moulding
Microcellular injection moulding (MuCell®) is a polymer processing technology that uses a supercritical fluid inert gas, CO2 or N2, to produce light-weight products. Due to environmental pressures and the requirement of light-weight parts with good mechanical properties, this technology recently gained significant attention. However, poor surface appearance and limited mechanical properties still prevent the wide applications of this technique.
  • 847
  • 16 Aug 2021
Topic Review
Biomedical Applications of Quaternized Chitosan
The natural polymer chitosan is the second most abundant biopolymer on earth after chitin and has been extensively explored for preparation of versatile drug delivery systems. The presence of two distinct reactive functional groups (an amino group at C2, and a primary and secondary hydroxyl group at C3 and C6) of chitosan are involved in the transformation of expedient derivatives such as acylated, alkylated, carboxylated, quaternized and esterified chitosan. Amongst these, quaternized chitosan is preferred in pharmaceutical industries owing to its prominent features including superior water solubility, augmented antimicrobial actions, modified wound healing, pH-sensitive targeting, biocompatibility, and biodegradability. It has been explored in a large realm of pharmaceuticals, cosmeceuticals, and the biomedical arena. Immense classy drug delivery systems containing quaternized chitosan have been intended for tissue engineering, wound healing, gene, and vaccine delivery. 
  • 847
  • 11 Aug 2021
Topic Review
Polymer Electrolyte Membrane Fuel Cell
Polymer electrolyte membrane fuel cells (PEMFCs) have been considered as electric power sources for cars, as well as stationary and portable power sources, due to their high energy efficiency, ease of operation, and environmental friendliness. Furthermore, as a promising power source, integrating PEMFCs into microgrids, which are a common structure in the smart grid framework, has been gaining traction around the world, encouraging the usage of hydrogen energy.
  • 842
  • 09 Aug 2021
Topic Review
Supercritical CO2
Supercritical CO2 (scCO2) is an alternative promising solvent that has been actively used in recent decades to simplify many processes of polymer synthesis, modification, decomposition, etc.
  • 842
  • 15 Nov 2022
Topic Review
Metal Complexes of the Porphyrin-Functionalized Polybenzoxazine
Porphyrin is a molecular material with many potential applications. New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal–porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization. 
  • 835
  • 24 Feb 2022
  • Page
  • of
  • 46
ScholarVision Creations