Topic Review
CPNHs for Fuel Cell Application
Carbon materials such as carbon graphitic structures, carbon nanotubes, and graphene nanosheets are extensively used as supports for electrocatalysts in fuel cells. Alternatively, conducting polymers displayed ultrahigh electrical conductivity and high chemical stability havegenerated an intense research interest as catalysts support for polymer electrolyte membrane fuel cells (PEMFCs) as well as microbial fuel cells (MFCs). Moreover, metal or metal oxides catalysts can be immobilized on the pure polymer or the functionalized polymer surface to generate conducting polymer-based nanohybrids (CPNHs) with improved catalytic performance and stability. Metal oxides generally have large surface area and/or porous structures and showed unique synergistic effects with CPs. Therefore, a stable, environmentally friendly bio/electro-catalyst can be obtained with CPNHs along with better catalytic activity and enhanced electron-transfer rate.
  • 856
  • 17 Feb 2021
Topic Review
Preparation of Organosiloxane Telechelics by Anionic Ring-opening Polymerization
Polydimethylsiloxanes (PDMS) telechelics are important both in industry and in academic research. They are used both in the free state and as part of copolymers and cross-linked materials. The most important, practically used, and well-studied method for the preparation of such PDMS is diorganosiloxane ring-opening polymerization (ROP) in the presence of nucleophilic or electrophilic initiators. Anionic ring opening polymerization (AROP) under the action of various nucleophilic reagents is widely used for the synthesis of high molecular weight polydiorganosiloxane telechelics with various organic surroundings of the siloxane chain. In the process of cyclosiloxane opening and chain growth, side processes may occur: depolymerization due to the breaking of the linear chain by the active center (backbiting reaction) with the formation of low molecular weight cyclic products, and chain transfer reaction, in which the terminal active site attacks the siloxane bond of another polymer chain, leading to a redistribution of macromolecules, which is also called equilibration
  • 854
  • 24 Jun 2022
Topic Review
Incorporation of Biochar
Biochar can be used as a reinforcing filler improving the mechanical, thermal and even electrical properties of polymer composites. The incorporation of this cost effective sustainable filler not only improves the applicability of the resulting composite but also makes the process and end product sustainable. 
  • 843
  • 25 Aug 2021
Topic Review
Polyisoprene Rubber
Rubber materials have been used in a wide range of applications, from automotive parts to special-design engineering pieces, as well as in the pharmaceutical, food, electronics, and military industries, among others. Since the discovery of the vulcanization of natural rubber (NR) in 1838, the continuous demand for this material has intensified the quest for a synthetic substitute with similar properties.
  • 842
  • 25 Oct 2023
Topic Review
Electrospun PVC Nanofibers
Electrospun PVC Nanofibers means PVC nanofibers manufactured by electrospinning.
  • 841
  • 19 Feb 2021
Topic Review
Solid-State Polymer Electrolytes for Lithium Batteries
In all-solid-state rechargeable lithium batteries, the solid-state electrolyte is located between the cathode and the anode, acting as an electrolyte and a separator, so the performance of the solid-state electrolyte is crucial to the performance of the entire battery.
  • 839
  • 23 Nov 2022
Topic Review
3D Printing Technologies in Dentistry
3D-printing application in dentistry not only enables the manufacture of patient-specific devices and tissue constructs, but also allows mass customization, as well as digital workflow, with predictable lower cost and rapid turnaround times.
  • 837
  • 16 Sep 2022
Topic Review
Aromatic Polyimide Films for Electronic Applications
Aromatic polyimides have excellent thermal stability, mechanical strength and toughness, high electric insulating properties, low dielectric constants and dissipation factors, and high radiation and wear resistance, among other properties, and can be processed into a variety of materials, including films, fibers, carbon fiber composites, engineering plastics, foams, porous membranes, coatings, etc. Aromatic polyimide materials have found widespread use in a variety of high-tech domains, including electric insulating, microelectronics and optoelectronics, aerospace and aviation industries, and so on, due to their superior combination characteristics and variable processability. In recent years, there have been many publications on aromatic polyimide materials, including several books available to readers. In this review, the representative progress in aromatic polyimide films for electronic applications, especially in our laboratory, will be described.
  • 829
  • 05 Apr 2022
Topic Review
Polysaccharides in Agro-Industrial Biomass Residues
The use of waste biomass to produce biopolymers and nutricosmetic or pharmacological materials is increasing, although still scarcely compared to its great potential, employment, and valorization. Organic waste biomass is a great source of natural polysaccharides such as cellulose, chitin, hyaluronic acid, inulin, and pectin. Biomass from the agricultural sectors is a relevant part of waste generation and commonly comprises leaves, roots, stalks, bark, bagasse, seeds, straw, wood, animal parts, crustacean shells, and others. Polysaccharides are the most abundant biological materials on the planet. This natural abundance contributes to the discovery of their novel applications. Their industrial use is still very modest considering their versatility and great potential, although it has recently seen significant increases.
  • 826
  • 18 Mar 2022
Topic Review
Food Bio-Based Packaging
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging.
  • 825
  • 27 Oct 2022
  • Page
  • of
  • 46
Video Production Service