Topic Review
Stellar Constellations in Fiction
Some stellar constellations have been featured in fictional works.
  • 864
  • 31 Oct 2022
Topic Review
Refractive Index and Extinction Coefficient of Thin-Film Materials
The derivation of the Forouhi–Bloomer dispersion equations is based on obtaining an expression for k as a function of photon energy, symbolically written as k(E), starting from first principles quantum mechanics and solid state physics. An expression for n as a function of photon energy, symbolically written as n(E), is then determined from the expression for k(E) in accordance to the Kramers–Kronig relations which states that n(E) is the Hilbert Transform of k(E). The Forouhi–Bloomer dispersion equations for n(E) and k(E) of amorphous materials are given as: [math]\displaystyle{ k(E) = \frac{A(E-E_g)^2}{E^2-BE+C} \ }[/math] [math]\displaystyle{ n(E) = n(\infty)+\frac{(B_0 E + C_0 )}{E^2-BE+C} \ }[/math] The five parameters A, B, C, Eg, and n(∞) each have physical significance. Eg is the optical energy band gap of the material. A, B, and C depend on the band structure of the material. They are positive constants such that 4C-B2 > 0. Finally, n(∞), a constant greater than unity, represents the value of n at E = ∞. The parameters B0 and C0 in the equation for n(E) are not independent parameters, but depend on A, B, C, and Eg. They are given by: [math]\displaystyle{ B_0 = \frac{A}{Q} \ \left (\frac{-B^2}{2} \ + E_gB - {E_g}^2 + C \right) }[/math] [math]\displaystyle{ C_0 = \frac{A}{Q} \ \left [({E_g}^2 + C) \frac{B}{2} \ - 2E_g C \right] }[/math] where [math]\displaystyle{ Q = \frac{1}{2} \ (4C - B^2 )^{\frac{1}{2}} }[/math] Thus, for amorphous materials, a total of five parameters are sufficient to fully describe the dependence of both n and k on photon energy, E. For crystalline materials which have multiple peaks in their n and k spectra, the Forouhi–Bloomer dispersion equations can be extended as follows: [math]\displaystyle{ k(E) = \sum_{i=1}^q \left [\frac{A_i(E - E_{g_i})^2}{E^2-B_iE+C_i} \right] }[/math] [math]\displaystyle{ n(E) = n(\infty)+\sum_{i=1}^q \left [\frac{B_{0_i}E+C_{0_i}}{E^2-B_iE+C_i} \right] }[/math] The number of terms in each sum, q, is equal to the number of peaks in the n and k spectra of the material. Every term in the sum has its own values of the parameters A, B, C, Eg, as well as its own values of B0 and C0. Analogous to the amorphous case, the terms all have physical significance.
  • 5.6K
  • 31 Oct 2022
Topic Review
Loopholes in Bell Tests
In Bell tests, there may be problems of experimental design or set-up that affect the validity of the experimental findings. These problems are often referred to as "loopholes". See the article on Bell's theorem for the theoretical background to these experimental efforts (see also John Stewart Bell). The purpose of the experiment is to test whether nature is best described using a local hidden-variable theory or by the quantum entanglement theory of quantum mechanics. The "detection efficiency", or "fair sampling" problem is the most prevalent loophole in optical experiments. Another loophole that has more often been addressed is that of communication, i.e. locality. There is also the "disjoint measurement" loophole which entails multiple samples used to obtain correlations as compared to "joint measurement" where a single sample is used to obtain all correlations used in an inequality. To date, no test has simultaneously closed all loopholes. Ronald Hanson of the Delft University of Technology claims the first Bell experiment that closes both the detection and the communication loopholes. (This was not an optical experiment in the sense discussed below; the entangled degrees of freedom were electron spins rather than photon polarization.) Nevertheless, correlations of classical optical fields also violate Bell's inequality. In some experiments there may be additional defects that make "local realist" explanations of Bell test violations possible; these are briefly described below. Many modern experiments are directed at detecting quantum entanglement rather than ruling out local hidden-variable theories, and these tasks are different since the former accepts quantum mechanics at the outset (no entanglement without quantum mechanics). This is regularly done using Bell's theorem, but in this situation the theorem is used as an entanglement witness, a dividing line between entangled quantum states and separable quantum states, and is as such not as sensitive to the problems described here. In October 2015, scientists from the Kavli Institute of Nanoscience reported that the quantum nonlocality phenomenon is supported at the 96% confidence level based on a "loophole-free Bell test" study. These results were confirmed by two studies with statistical significance over 5 standard deviations which were published in December 2015. However, Alain Aspect writes that No experiment can be said to be totally loophole-free.
  • 1.8K
  • 31 Oct 2022
Topic Review
Annus Mirabilis Papers
The Annus mirabilis papers (from Latin annus mīrābilis, "miracle year") are the papers of Albert Einstein published in the Annalen der Physik scientific journal in 1905. These four articles contributed substantially to the foundation of modern physics and changed views on space, time, mass, and energy. The annus mirabilis is often called the "miracle year" in English or Wunderjahr in German. The first paper elucidated the theory of the photoelectric effect; the second paper explained Brownian motion; the third paper introduced special relativity; and the fourth, mass-energy equivalence. Together, these papers substantially advanced the field of modern physics.
  • 867
  • 31 Oct 2022
Topic Review
UV-Vis Absorption Spectroelectrochemistry
Ultraviolet-visible (UV-Vis) absorption spectroelectrochemistry (SEC) is a multiresponse technique that analyzes the evolution of the absorption spectra in UV-Vis regions during an electrode process. This technique provides information from an electrochemical and spectroscopic point of view. In this way, it enables a better perception about the chemical system of interest. On one hand, molecular information related to the electronic levels of the molecules is obtained from the evolution of the spectra. On the other hand, kinetic and thermodynamic information of the processes is obtained from the electrochemical signal. UV-Vis absorption SEC allows qualitative analysis, through the characterization of the different present compounds, and quantitative analysis, by determining the concentration of the analytes of interest. Furthermore, it helps to determine different electrochemical parameters such as absorptivity coefficients, standard potentials, diffusion coefficients, electronic transfer rate constants, etc. Throughout history, reversible processes have been studied with colored reagents or electrolysis products. Nowadays, it is possible to study all kinds of electrochemical processes in the entire UV-Vis spectral range, even in the near infrared (NIR).
  • 464
  • 31 Oct 2022
Topic Review
Electrostatic Fluid Accelerator
An electrostatic fluid accelerator (EFA) is a device which pumps a fluid such as air without any moving parts. Instead of using rotating blades, as in a conventional propeller or in the turbine of an airbreathing jet engine, an EFA uses the Coulomb force from a high voltage electric field to accelerate electrically charged air molecules, a phenomenon studied in the academic discipline called electrohydrodynamics (EHD). Because air molecules are normally electrically neutral, not charged, the EFA has to create some charged molecules, or ions, first. Thus there are three basic steps in the fluid acceleration process: ionize air molecules, accelerate those charge carriers and, through ion-ion and ion-neutral collisions, push many more neutral molecules in a desired direction, and finally neutralize ions again to eliminate any net charge in the downstream flow. This principle is used for spacecraft propulsion in ion thrusters. The basic working principle has been understood for some time but only in recent years have seen developments in the design and manufacture of EFA devices that may allow them to find practical and economical applications, such as in micro-cooling of electronics components.
  • 914
  • 31 Oct 2022
Topic Review
Potential Flow Around a Circular Cylinder
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
  • 4.3K
  • 31 Oct 2022
Topic Review
Power
In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called activity. Power is a scalar quantity. Power is related to other quantities; for example, the power involved in moving a ground vehicle is the product of the traction force on the wheels and the velocity of the vehicle. The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element.
  • 2.4K
  • 31 Oct 2022
Topic Review
Black Belt (U.S. Region)
The Black Belt is a region of the Southern United States. The term originally described the prairies and dark fertile soil of central Alabama and northeast Mississippi. Because this area in the 19th century was historically developed for cotton plantations based on enslaved African American labor, the term became associated with these conditions. It was generally applied to a much larger agricultural region in the Southern United States, which was characterized by a history of cotton plantation agriculture in the 19th century and a high percentage of African Americans outside metropolitan areas. The enslaved peoples were freed after the American Civil War, and many continued to work in agriculture afterward. Their descendants make up much of the African-American population of the United States. During the first half of the 19th Century, as many as one million enslaved Africans were transported through sales in the domestic slave trade to the Deep South in a forced migration to work as laborers for the region's cotton plantations. After having lived enslaved for several generations in the area, many remained as rural workers, tenant farmers and sharecroppers after the Civil War and emancipation. Beginning in the early 20th century and up to 1970, a total of six million black people left the South in the Great Migration to find work and other opportunities in the industrial cities of the Northeast, Midwest, and West. Because of relative isolation and lack of economic development, the rural communities in the Black Belt have historically faced acute poverty, rural exodus, inadequate education programs, low educational attainment, poor health care, urban decay, substandard housing, and high levels of crime and unemployment. In December 2017, the Special Rapporteur of the Office of the United Nations High Commissioner for Human Rights declared that Alabama was the most impoverished area in the developed world. Given the history of decades of racial segregation into the late 20th century, African-American residents have been the most disproportionately affected, although these problems apply broadly to all ethnic groups in the rural Black Belt. The region and its boundaries have varying definitions, but it is generally considered a band through the center of the Deep South, although stretching from as far north as Delaware to as far west as East Texas.
  • 3.0K
  • 31 Oct 2022
Topic Review
Electron Rest Mass
The electron rest mass (symbol: me) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics. It has a value of about 9.109×10−31 kilograms or about 5.486×10−4 daltons, equivalent to an energy of about 8.187×10−14 joules or about 0.5110 MeV.
  • 11.9K
  • 31 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations