Topic Review
Soyuz 5
Soyuz 5 (Russian: Союз 5, Union 5) was a Soyuz mission using the Soyuz 7K-OK spacecraft launched by the Soviet Union on 15 January 1969, which docked with Soyuz 4 in orbit. It was the first docking of two crewed spacecraft of any nation, and the first transfer of crew from one space vehicle to another of any nation, the only time a transfer was accomplished with a space walk – two months before the United States Apollo 9 mission performed the first internal crew transfer. The mission, flown by cosmonauts Boris Volynov, Aleksei Yeliseyev, and Yevgeny Khrunov, was also memorable for its dramatic re-entry. The craft's service module did not separate, so it entered the atmosphere nose-first, leaving Volynov hanging by his restraining straps. As the craft aerobraked, the atmosphere burned through the service module, allowing the remaining descent module to right itself before the escape hatch was burned through. During the descent, the parachute lines tangled and the landing rockets failed, resulting in a hard landing that broke Volynov's teeth.
  • 412
  • 03 Nov 2022
Topic Review
Mean Field Theory
In physics and probability theory, mean-field theory (aka MFT or rarely self-consistent field theory) studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom. Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem. The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. This reduces any multi-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost. MFT has since been applied to a wide range of fields outside of physics, including statistical inference, graphical models, neuroscience, artificial intelligence, epidemic models, queueing theory, computer network performance and game theory, as in the Quantal response equilibrium.
  • 3.2K
  • 03 Nov 2022
Topic Review
Ray Tracing
In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Ray tracing solves the problem by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays. When applied to problems of electromagnetic radiation, ray tracing often relies on approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray theory does not describe phenomena such as interference and diffraction, which require wave theory (involving the phase of the wave).
  • 574
  • 03 Nov 2022
Topic Review
Northern Light (Spacecraft)
Northern Light was a concept mission for a robotic mission to Mars that would consist of a lander and a rover, being studied by a consortium of Canadian universities, companies and organisations. The primary contractor for the spacecraft was Thoth Technology Inc. The spacecraft would consist of four parts: an apogee kick engine to provide orbital injection for a cruise vehicle that carries the Northern Light lander and the Beaver Rover to a direct rendezvous with Mars using a Hohmann transfer orbit. Atmospheric entry would be achieved by a heat shield, parachute and airbag deployment system. The lander would transfer the rover to the Martian surface. Once deployed on the Martian surface, the lander contacts Earth directly to the 46 m parabolic antenna located at the Algonquin Radio Observatory. The Beaver Rover was proposed to have a maximum range of 1000 metres (0.62 mile) from the landing site. It would have operated under battery, utilizing tools and sensors to investigate surface rocks that may contain the presence of photosynthetic life.
  • 283
  • 03 Nov 2022
Topic Review
Magic Number
In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126 (sequence A018226 in the OEIS). For protons, this corresponds to the elements helium, oxygen, calcium, nickel, tin, lead and the hypothetical unbihexium, although 126 is so far only known to be a magic number for neutrons. Atomic nuclei consisting of such a magic number of nucleons have a higher average binding energy per nucleon than one would expect based upon predictions such as the semi-empirical mass formula and are hence more stable against nuclear decay. The unusual stability of isotopes having magic numbers means that transuranium elements could theoretically be created with extremely large nuclei and yet not be subject to the extremely rapid radioactive decay normally associated with high atomic numbers. Large isotopes with magic numbers of nucleons are said to exist in an island of stability. Unlike the magic numbers 2–126, which are realized in spherical nuclei, theoretical calculations predict that nuclei in the island of stability are deformed. Before this was realized, higher magic numbers, such as 184, 258, 350, and 462 (sequence A033547 in the OEIS), were predicted based on simple calculations that assumed spherical shapes: these are generated by the formula [math]\displaystyle{ 2(\tbinom n1+ \tbinom n2+\tbinom n3) }[/math] (see Binomial coefficient). It is now believed that the sequence of spherical magic numbers cannot be extended in this way. Further predicted magic numbers are 114, 122, 124, and 164 for protons as well as 184, 196, 236, and 318 for neutrons. However, more modern calculations predict 228 and 308 for neutrons, along with 184 and 196.
  • 989
  • 03 Nov 2022
Topic Review
Black Holes and Quantum Mechanics
Mass and spin distributions of stellar mass black holes (BH) are important sources of information on the formation mechanism and the evolution of galaxies. The birth of a stellar-mass BH, ranging in the interval ~5–150 M⊙, is due to the spectacular phase of a massive star’s core collapse, an event involving the emission of multi-messenger signals such as neutrinos, GW’s and electromagnetic radiation in several bands.
  • 393
  • 03 Nov 2022
Topic Review
Machine-Learning-Based Methods for Acoustic Emission Testing
Acoustic emission (AE) testing has obvious limitations regarding its reproducibility: as it was said, this type of test involves the formation or progression of cracks in the material. Even when referring to specimens of the same material, of the same dimensions, and subjected to the same load cycle, they do not necessarily produce the same results. This is especially true in the case of anisotropic and heterogeneous materials. Moreover, since the signals used by precursors are of modest entity, to be able to detect possible forms of energy in the material, it is necessary to use particularly sensitive sensors. Further problems arise due to the attenuation phenomena of the acoustic stress wave that is dispersed in the material as it propagates: just as the noise due to sources independent of the possible structural defect can disturb the detection methodology. To overcome these limitations, researchers adopted alternative methodologies to improve the results of the structural damage identification procedures. The capabilities demonstrated by the technologies based on ML in detecting patterns were immediately noticed by AE researchers. To make this nondestructive testing method even more effective, all the methodologies based on ML for the recognition of the stress wave can be applied during the detection phase of the acoustic emission generated by the source. In this way, it is possible to carry out a test that is robust regarding noise and effective in detecting waves of modest entity. The most common methodologies based on ML applied in the field of AE are presented below. ML is a branch of artificial intelligence whose goal is to allow machines to automatically learn something from experience, without the need for them to be programmed in advance. Experience is a collection of data, which can be fixed and immutable, or even expand over time. Learning can be carried out through two main approaches: supervised and unsupervised.
  • 687
  • 03 Nov 2022
Topic Review
Soyuz 4
Soyuz 4 (Russian: Союз 4, Union 4) was launched on 14 January 1969, carrying cosmonaut Vladimir Shatalov on his first flight. The aim of the mission was to dock with Soyuz 5, transfer two crew members from that spacecraft, and return to Earth. The previous Soyuz flight (Soyuz 3) was also a docking attempt but failed for various reasons. The radio call sign of the crew was Amur, while Soyuz 5 was Baikal. This referred to the trans-Siberian railway project called the Baikal-Amur Mainline, which was in development at the time.
  • 392
  • 03 Nov 2022
Topic Review
Reduction Potential
Redox potential (also known as oxidation / reduction potential, ORP, pe, [math]\displaystyle{ E_{red} }[/math], or [math]\displaystyle{ E_{h} }[/math]) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respectively. Redox potential is expressed in volts (V). Each species has its own intrinsic redox potential; for example, the more positive the reduction potential (reduction potential is more often used due to general formalism in electrochemistry), the greater the species' affinity for electrons and tendency to be reduced.
  • 1.1K
  • 02 Nov 2022
Topic Review
Jiles–Atherton Model
The Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. Jiles–Atherton model enables calculation of minor and major hysteresis loops. The original Jiles–Atherton model is suitable only for isotropic materials. However, an extension of this model presented by Ramesh et al. and corrected by Szewczyk enables the modeling of anisotropic magnetic materials.
  • 1.6K
  • 02 Nov 2022
  • Page
  • of
  • 131
ScholarVision Creations