1000/1000
Hot
Most Recent
The Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. Jiles–Atherton model enables calculation of minor and major hysteresis loops. The original Jiles–Atherton model is suitable only for isotropic materials. However, an extension of this model presented by Ramesh et al. and corrected by Szewczyk enables the modeling of anisotropic magnetic materials.
Magnetization
Original Jiles–Atherton model considers following parameters:[1]
Parameter | Units | Description |
---|---|---|
Quantifies interdomain coupling in the magnetic material | ||
A/m | Quantifies domain walls density in the magnetic material | |
A/m | Saturation magnetization of material | |
A/m | Quantifies average energy required to break pinning site in the magnetic material | |
Magnetization reversibility |
Extension considering uniaxial anisotropy introduced by Ramesh et al.[2] and corrected by Szewczyk [3] requires additional parameters:
Parameter | Units | Description |
---|---|---|
J/m3 | Average anisotropy energy density | |
rad | Angle between direction of magnetizing field |
|
Participation of anisotropic phase in the magnetic material |
Effective magnetic field
This effective magnetic field is analogous to the Weiss mean field acting on magnetic moments within a magnetic domain.[1]
Anhysteretic magnetization can be observed experimentally, when magnetic material is demagnetized under the influence of constant magnetic field. However, measurements of anhysteretic magnetization are very sophisticated due to the fact, that the fluxmeter has to keep accuracy of integration during the demagnetization process. As a result, experimental verification of the model of anhysteretic magnetization is possible only for materials with negligible hysteresis loop.[3]
Anhysteretic magnetization of typical magnetic material can be calculated as a weighted sum of isotropic and anisotropic anhysteretic magnetization:[4]
Isotropic anhysteretic magnetization
Anisotropic anhysteretic magnetization
where
It should be highlighted, that a typing mistake occurred in the original Ramesh et al. publication.[3] As a result, for an isotropic material (where
In the corrected form, the model for anisotropic anhysteretic magnetization
In Jiles–Atherton model, M(H) dependence is given in form of following ordinary differential equation:[5]
where
Flux density
where
Vectorized Jiles–Atherton model is constructed as the superposition of three scalar models one for each principal axis.[6] This model is especially suitable for finite element method computations.
The Jiles–Atherton model is implemented in JAmodel, a MATLAB/OCTAVE toolbox. It uses the Runge-Kutta algorithm for solving ordinary differential equations. JAmodel is open-source is under MIT license.[7]
The two most important computational problems connected with the Jiles–Atherton model were identified:[7]
For numerical integration of the anisotropic anhysteretic magnetization
For solving ordinary differential equation for
Since its introduction in 1984, Jiles–Atherton model was intensively developed. As a result, this model may be applied for the modeling of:
Moreover, different corrections were implemented, especially:
Jiles–Atherton model may be applied for modeling:
It is also widely used for electronic circuit simulation, especially for models of inductive components, such as transformers or chokes.[23]