Topic Review
Origin of ICL
Not all the light in galaxy groups and clusters comes from stars that are bound to galaxies. A significant fraction of it constitutes the so-called intracluster or diffuse light (ICL), a low surface brightness component of groups/clusters generally found in the surroundings of the brightest cluster galaxies and intermediate/massive satellites
  • 696
  • 13 Sep 2021
Topic Review
Organic Waste Gasification by Steam and Carbon Dioxide
The selective studies on environmentally friendly, combustion-free, allothermal, atmospheric-pressure, noncatalytic, direct H2O/CO2 gasification of organic feedstocks like biomass, sewage sludge wastes (SSW) and municipal solid wastes (MSW) are considered to demonstrate the pros and cons of the approaches and provide future perspectives. The environmental friendliness of H2O/CO2 gasification is well known as it is accompanied by considerably less harmful emissions into the environment as compared to O2/air gasification. Comparative analysis of the various gasification technologies includes low-temperature H2O/CO2 gasification at temperatures up to 1000 °C, high-temperature plasma- and solar-assisted H2O/CO2 gasification at temperatures above 1200 °C, and an innovative gasification technology applying ultra-superheated steam (USS) with temperatures above 2000 °C obtained by pulsed or continuous gaseous detonations. Analysis shows that in terms of such characteristics as the carbon conversion efficiency (CCE), tar and char content, and the content of harmful by-products the plasma and detonation USS gasification technologies are most promising. However, as compared with plasma gasification, detonation USS gasification does not need enormous electric power with unnecessary and energy-consuming gas–plasma transition.
  • 1.5K
  • 28 Jan 2022
Topic Review
Optimizing Sustainability Opportunities for Biochar
Biochar is most commonly considered for its use as a soil amendment, where it has gained attention for its potential to improve agricultural production and soil health. Twenty years of near exponential growth in investigation has demonstrated that biochar does not consistently deliver these benefits, due to variables in biochar, soil, climate, and cropping systems. While biochar can provide agronomic improvements in marginal soils, it is less likely to do so in temperate climates and fertile soils. Here, biochar and its coproducts may be better utilized for contaminant remediation or the substitution of nonrenewable or mining-intensive materials. 
  • 690
  • 18 Oct 2021
Topic Review
Optimization Design Methods for PUT
Sound waves are a form of energy transmission in the mechanical vibration state of an object. Ultrasound is a type of sound wave with a vibration frequency higher than 20 kHz, which cannot be heard by humans. A piezoelectric ultrasonic transducer (PUT) is a device for achieving mutual conversion of mechanical energy and electrical energy. Due to the advantages of high safety and low cost, a PUT has been widely used as the core device for non-destructive testing (NDT), medical imaging, particle manipulation, and flow measurement. The traditional optimization design methods are mainly based on an analytical model, an equivalent circuit model, or a finite element model and the design parameters are adjusted by a trial-and-error method, which relies on the experience of experts and has a relatively low efficiency. Recently, by combining intelligent optimization algorithms, efficient optimization design methods for a PUT have been developed based on a traditional model or a data-driven model, which can effectively improve the design efficiency of a PUT and reduce its development cycle and cost. 
  • 416
  • 13 Jul 2021
Topic Review
Optical-Coherence Tomography Angiography in AMD
Optical coherence tomography angiography (OCTA) is a non-invasive diagnostic instrument that has become indispensable for the management of age-related macular degeneration (AMD). OCTA allows quickly visualizing retinal and choroidal microvasculature, and in the last years, its use has increased in clinical practice as well as for research into the pathophysiology of AMD.
  • 698
  • 22 Sep 2021
Topic Review
Optical Tweezers with Metasurfaces
Optical tweezers (OTs) have made significant progress, realizing the non-contact optical manipulation of target objects through the interaction between light and matter. In addition to trapping particles with the intensity gradient of the beam, a series of complex optical elements are required to properly modulate the beams to expand the operation of optical manipulation. The development of metasurfaces alleviates this problem. Due to the merits of miniaturization, planarization, multi-function, and integration of metasurfaces, these kinds of novel devices have been applied in OT systems. 
  • 207
  • 17 Aug 2023
Topic Review
Optical Tweezers
Optical tweezers is a very well-established technique that has developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Under tight focusing of a laser beam the optical forces that appear around the focus spot can be both repulsive (scattering force) and attractive (gradient force) towards a particle with higher refractive index than its surroundings. By proper control of these two forces a stable potential can be achieved where a particle can be trapped and manipulated in space. The ability to manipulate micro- and nanoscale matter according to our needs has opened great avenues to a variety of research areas.
  • 1.1K
  • 19 Aug 2020
Topic Review
Optical Sensors in Mechanobiology
Optical sensors play a central role in the study of mechanobiology by enabling the accurate detection and measurement of mechanical forces and their effects on biological systems. Mechanobiology explores how mechanical forces influence cellular processes, tissue development, and overall physiological functions.
  • 296
  • 03 Nov 2023
Topic Review
Optical Properties of Plasmonic Metal Nanoparticles
Plasmonic phenomena and materials have been extensively investigated for a long time and gained popularity in the last few years, finding in the design of the biosensors platforms promising applications offering devices with excellent performances. Hybrid systems composed of graphene, or other 2D materials, and plasmonic metal nanostructures present extraordinary optical properties originated from the synergic connection between plasmonic optical effects and the unusual physicochemical properties of 2D materials, thus improving their application in a broad range of fields. 
  • 1.1K
  • 08 Jul 2022
Topic Review
Optical Polarization-Based Measurement for Peptides and Amino Acids
Polarization-based optical measurement methods are very useful in the analysis of the molecular orientations of materials, and, thus, these methods are implemented in numerous material-science studies, including into the characterization of amino acids’ (SAPA)  micro- and nanostructures.
  • 556
  • 21 Mar 2022
  • Page
  • of
  • 130
Video Production Service