Topic Review
Extinction
In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars that lie near the plane of the Milky Way and are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies (photometric system) is roughly 1.8 magnitudes per kiloparsec. For Earth-bound observers, extinction arises both from the interstellar medium (ISM) and the Earth's atmosphere; it may also arise from circumstellar dust around an observed object. Strong extinction in earth's atmosphere of some wavelength regions (such as X-ray, ultraviolet, and infrared) is overcome by the use of space-based observatories. Since blue light is much more strongly attenuated than red light, extinction causes objects to appear redder than expected, a phenomenon referred to as interstellar reddening.
  • 1.5K
  • 18 Oct 2022
Topic Review
Extinction-Coefficient Modulation of MoO3 Films
This entry focused on the application of the effective medium theory to describe the extinction coefficient (Qext) in molybdenum trioxide (MoO3) doped with different kinds of plasmonic nanoparticles, such as silver (Ag), gold (Au), and copper (Cu). Usually, in studies of these materials, it is normal to analyze the transmission or absorption spectra. However, the effect of this type or size of nanoparticles on the spectra is not as remarkable as the effect that is found by analyzing the Qext of MoO3. It was shown that the β-phase of MoO3 enhanced the intensity response of the Qext when compared to the α-phase of MoO3. With a nanoparticle size of 5 nm, the Ag-doped MoO3 was the configuration that presents the best response in Qext. On the other hand, Cu nanoparticles with a radius of 20 nm embedded in MoO3 was the configuration that presented intensities in Qext similar to the cases of Au and Ag nanoparticles. Therefore, implementing the effective medium theory can serve as a guide for experimental researchers for the application of these materials as an absorbing layer in photovoltaic cells. 
  • 658
  • 20 Aug 2021
Topic Review
Fabrication of Semiconductor Optical Fibers
Because of their thermal and mechanical mismatch with typical glass materials, the fabrication of optical fibers from semiconductors is a considerable challenge for the field of materials science. As a result, the platform for optical fibers has been restricted to materials that are consistent with the typical fiber drawing techniques for an extended period. In 2006, a chemical deposition approach was used to create the initial example of a crystalline semiconductor optical fiber. As a result of this endeavor, different methods have been utilized in the fabrication of semiconductor optical fibers. Each of these methods has its own set of benefits and drawbacks. Since there have been no standardized techniques for fabricating these fibers, their production is relatively costly.
  • 569
  • 31 Oct 2022
Topic Review
False Vacuum
In quantum field theory, a false vacuum is a hypothetical vacuum that is somewhat, but not entirely, stable. It may last for a very long time in that state, and might eventually move to a more stable state. The most common suggestion of how such a change might happen is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" (also called "bounce") would spread. A false vacuum exists at a local minimum of energy and is therefore not stable, in contrast to a true vacuum, which exists at a global minimum and is stable. It may be very long-lived, or metastable.
  • 1.9K
  • 24 Oct 2022
Topic Review
FASTRAD
FASTRAD is a tool dedicated to the calculation of radiation effects (Dose and Displacement Damage) on electronics. The tool includes a 3d modelling interface with all the capabilities required for the representation of any system. Application areas include: high energy physics and nuclear experiments, medical, accelerator and space physics studies. The software is used by radiation engineers around the world.
  • 360
  • 26 Oct 2022
Topic Review
Ferroelastic Twinning in Minerals
Ferroelastic twinning in minerals is a very common phenomenon. The twin laws follow simple symmetry rules and they are observed in minerals, like feldspar, palmierite, leucite, perovskite, and so forth. The major discovery over the last two decades was that the thin areas between the twins yield characteristic physical and chemical properties, but not the twins themselves. Research greatly focusses on these twin walls (or ‘twin boundaries’); therefore, because they possess different crystal structures and generate a large variety of ‘emerging’ properties. Research on wall properties has largely overshadowed research on twin domains. 
  • 1.3K
  • 15 Jun 2021
Topic Review
Ferromagnetic
Ferromagnetism is a phenomenon whereby a substance can become a permanent magnet or strongly reacts to a magnetic field. 
  • 916
  • 27 Apr 2022
Topic Review
FFAG Accelerator
A Fixed-Field Alternating Gradient accelerator (FFAG) is a circular particle accelerator concept on which development was started in the early 50s, and that can be characterized by its time-independent magnetic fields (fixed-field, like in a cyclotron) and the use of strong focusing (alternating gradient, like in a synchrotron). Thus, FFAG accelerators combine the cyclotron's advantage of continuous, unpulsed operation, with the synchrotron's relatively inexpensive small magnet ring, of narrow bore. Although the development of FFAGs had not been pursued for over a decade starting from 1967, it has regained interest since the mid-1980s for usage in neutron spallation sources, as a driver for muon colliders and to accelerate muons in a neutrino factory since the mid-1990s. The revival in FFAG research has been particularly strong in Japan with the construction of several rings. This resurgence has been prompted in part by advances in RF cavities and in magnet design.
  • 1.4K
  • 01 Nov 2022
Topic Review
Field
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field. In the modern framework of the quantum theory of fields, even without referring to a test particle, a field occupies space, contains energy, and its presence precludes a classical "true vacuum". This has led physicists to consider electromagnetic fields to be a physical entity, making the field concept a supporting paradigm of the edifice of modern physics. "The fact that the electromagnetic field can possess momentum and energy makes it very real ... a particle makes a field, and a field acts on another particle, and the field has such familiar properties as energy content and momentum, just as particles can have." In practice, the strength of most fields diminishes with distance, eventually becoming undetectable. For instance the strength of many relevant classical fields, such as the gravitational field in Newton's theory of gravity or the electrostatic field in classical electromagnetism, is inversely proportional to the square of the distance from the source (i.e., they follow Gauss's law). A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field somewhere else. For example, the Newtonian gravitational field is a vector field: specifying its value at a point in spacetime requires three numbers, the components of the gravitational field vector at that point. Moreover, within each category (scalar, vector, tensor), a field can be either a classical field or a quantum field, depending on whether it is characterized by numbers or quantum operators respectively. In this theory an equivalent representation of field is a field particle, for instance a boson.
  • 1.1K
  • 11 Oct 2022
Topic Review
Figures of Merit for Photodetectors
Photodetector are devices used to convert light signals into electrical signals and have a wide range of applications in optical communication, imaging and industrial security. With the emergency of new materials, new kinds of photodetectors are developed, such as van der Waals heterojunction photodetectors. In order to assess the performance of photodetectors, several key parameters are introduced.
  • 521
  • 09 Oct 2023
  • Page
  • of
  • 118
Video Production Service