Topic Review
Waveguide-Enhanced Raman Spectroscopy
Photonic chip-based methods for spectroscopy are of considerable interest due to their applicability to compact, low-power devices for the detection of small molecules. Waveguide-enhanced Raman spectroscopy (WERS) has emerged over the past decade as a particularly interesting approach. WERS utilizes the evanescent field of a waveguide to generate Raman scattering from nearby analyte molecules, and then collects the scattered photons back into the waveguide. The large interacting area and strong electromagnetic field provided by the waveguide allow for significant enhancements in Raman signal over conventional approaches.
  • 436
  • 29 Dec 2022
Topic Review
Nanocrystalline Magnetic Semiconductors for Spintronics
Сhallenge for spintronics is to find new ways for the control of electronic phenomena and magnetic properties of solids at nanoscale. Some promising aspects are connected with developing new materials. The research highlights the areas devoted to the creation of new functional materials for spintronics based on magnetic semiconductors and demonstrates the technical possibilities of creating various devices, in particular, a maser, a p-n junction with a colossal magnetoresistance, a spin valve, a magnetic lens, modulators, spin wave amplifier, etc. A magnetic semiconductor is a magnetic material that, in terms of specific conductivity, occupies an intermediate position between a conductor and an insulator, and has a band gap comparable to ~kBT. Most known magnetic semiconductors (SC) are either oxides or chalcogenides (sulfides, selenides and tellurides) of 3d transition metals, rare earth 4f metals or a combination. Spintronics (spin electronics) studies spin current transfer (spin-polarized transport) in condensed media, including contact structures, heterostructures, superlattices and multilayers. Much attention is paid to the mechano-physical methods of obtaining of high-density transparent nanoceramics based on magnetic semiconductors. The potential possibility of using nanoceramics as an absorber of solar energy, as well as in modulators of electromagnetic radiation, is also presented. The THz magneto-optics in magnetic semiconductors is shown to be beneficial to the intensively developing fields of spintronics – ultrafast magnetooptics and magnetophotonics in magnetic semiconductors.
  • 620
  • 20 Dec 2022
Topic Review
X-ray Images and Spectrograms with Spatial Resolution
X-ray imaging diagnostics based on Fresnel lenses are very promising as the field of view is of the order of 1 mm and even higher, and the spatial resolution can reach hundreds of nm. The obvious disadvantage of such diagnostics is the presence of the chromatic effect, which reduces the contrast of the image and leads to the need to use a rather narrow spectral range. The spectrographs with flat or curved crystals used have a satisfactory spectral resolution but cannot always provide sufficient luminosity and spatial resolution when it comes to obtaining images of plasma sources. Spectrometers with toroidal schemes do not have these disadvantages, but their surface is much more difficult to fabricate and the resulting schemes are difficult to set up because of the limitation in all six degrees of freedom.
  • 584
  • 16 Dec 2022
Topic Review
Biosensing Applications of GLAD-Fabricated Nanostructures
Glancing angle deposition (GLAD) is a technique for the fabrication of sculpted micro- and nanostructures under the conditions of oblique vapor flux incident and limited adatom diffusion. GLAD-based nanostructures are emerging platforms with broad sensing applications due to their high sensitivity, enhanced optical and catalytic properties, periodicity, and controlled morphology. GLAD-fabricated nanochips and substrates for chemical and biosensing applications are replacing conventionally used nanomaterials due to their broad scope, ease of fabrication, controlled growth parameters, and hence, sensing abilities.
  • 453
  • 13 Dec 2022
Topic Review
Bragg Grating External Cavity Semiconductor Lasers
External cavity semiconductor lasers (ECSLs) usually refer to the gain chip based on the introduction of external optical components (such as waveguides, gratings, prisms, etc.) to provide optical feedback. By designing the type, position and structure of external optical components, the optical properties of SLs (such as center wavelength, linewidth, tuning range, side-mode suppression ratio (SMSR), etc.) can be changed. Bragg grating external cavity semiconductor laser (BG-ECSL) is a device with a specific optical element (Bragg grating) in the external cavity. BG-ECSLs have excellent performances, such as narrow linewidth, tunability and high SMSR. They are widely used in WDM systems, coherent optical communication, gas detection, Lidar, atomic physics and other fields. 
  • 727
  • 09 Dec 2022
Topic Review
Pi Interaction
In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems. Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. Non-covalent interactions involving π systems are pivotal to biological events such as protein-ligand recognition.
  • 1.5K
  • 07 Dec 2022
Topic Review
List of Messier Objects
The Messier objects are a set of 110 astronomical objects catalogued by the French astronomer Charles Messier in his "Catalogue des Nébuleuses et des Amas d'Étoiles" ("Catalogue of Nebulae and Star Clusters"). A preliminary version first appeared in Memoirs of the French Academy of Sciences in 1771, and the last item was added in 1966 by Kenneth Glyn Jones, based on Messier's observations. The first version of Messier's catalogue contained 45 objects and was published in 1774 in the journal of the French Academy of Sciences in Paris. In addition to his own discoveries, this version included objects previously observed by other astronomers, with only 17 of the 45 objects being Messier’s. By 1780 the catalog had increased to 80 objects. The final version of the catalogue containing 103 objects was published in 1781 in the Connaissance des Temps for the year 1784. However, due to what was thought for a long time to be the incorrect addition of Messier 102, the total number remained 102. Other astronomers, using side notes in Messier's texts, eventually filled out the list up to 110 objects. The catalogue consists of a diverse range of astronomical objects, ranging from star clusters, nebula and galaxies. Messier 1 is the supernova remnant of Crab Nebula and the great spiral Andromeda Galaxy is M 31. Many further inclusions followed in the next century when the first addition came from Nicolas Camille Flammarion in 1921, who added Messier 104 after finding Messier’s side note in his 1781 edition exemplar of the catalogue. M105 to M107 were added by Helen Sawyer Hogg in 1947, M108 and M109 by Owen Gingerich in 1960, and M110 by Kenneth Glyn Jones in 1967. Because Messier was interested in finding only comets, he created a list of non-comet objects that frustrated his hunt for them. The compilation of this list, in collaboration with his assistant Pierre Méchain, is known as the Messier catalogue. This catalogue of objects is one of the most famous lists of astronomical objects, and many Messier objects are still referenced by their Messier number.
  • 566
  • 06 Dec 2022
Topic Review
Transit of Venus, 1639
The first known observations and recording of a transit of Venus were made in 1639 by the English astronomers Jeremiah Horrocks and his friend and correspondent William Crabtree. The pair made their observations independently on 4 December that year (24 November under the Julian calendar then used in England); Horrocks from Carr House, then in the village of Much Hoole, Lancashire, and Crabtree from his home in Broughton, near Manchester. The friends, followers of the new astronomy of Johannes Kepler, were self-taught mathematical astronomers who had worked methodically to correct and improve Kepler's Rudolphine tables by observation and measurement. In 1639, Horrocks was the only astronomer to realise that a transit of Venus was imminent; others became aware of it only after the event when Horrocks's report of it was circulated. Although the friends both died within five years of making their observations, their ground-breaking work was influential in establishing the size of the Solar System; for this and their other achievements Horrocks and Crabtree, along with their correspondent William Gascoigne, are considered to be the founding fathers of British research astronomy.
  • 536
  • 06 Dec 2022
Topic Review
Stress Measures
The most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several other measures of stress can be defined. Some such stress measures that are widely used in continuum mechanics, particularly in the computational context, are: The Kirchhoff stress (τ). The Nominal stress (N). The first Piola-Kirchhoff stress (P). This stress tensor is the transpose of the nominal stress (P=NT). The second Piola-Kirchhoff stress or PK2 stress (S). The Biot stress (T).
  • 520
  • 06 Dec 2022
Topic Review
Transmission Electron Microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology. TEM instruments have multiple operating modes including conventional imaging, scanning TEM imaging (STEM), diffraction, spectroscopy, and combinations of these. Even within conventional imaging, there are many fundamentally different ways that contrast is produced, called "image contrast mechanisms". Contrast can arise from position-to-position differences in the thickness or density ("mass-thickness contrast"), atomic number ("Z contrast", referring to the common abbreviation Z for atomic number), crystal structure or orientation ("crystallographic contrast" or "diffraction contrast"), the slight quantum-mechanical phase shifts that individual atoms produce in electrons that pass through them ("phase contrast"), the energy lost by electrons on passing through the sample ("spectrum imaging") and more. Each mechanism tells the user a different kind of information, depending not only on the contrast mechanism but on how the microscope is used—the settings of lenses, apertures, and detectors. What this means is that a TEM is capable of returning an extraordinary variety of nanometer- and atomic-resolution information, in ideal cases revealing not only where all the atoms are but what kinds of atoms they are and how they are bonded to each other. For this reason TEM is regarded as an essential tool for nanoscience in both biological and materials fields. The first TEM was demonstrated by Max Knoll and Ernst Ruska in 1931, with this group developing the first TEM with resolution greater than that of light in 1933 and the first commercial TEM in 1939. In 1986, Ruska was awarded the Nobel Prize in physics for the development of transmission electron microscopy.
  • 2.8K
  • 05 Dec 2022
  • Page
  • of
  • 118
Video Production Service