Topic Review
Dye-Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) have emerged as promising alternatives to traditional silicon-based solar cells due to their relatively high conversion efficiency, low cost, flexibility, and environmentally benign fabrication processes.
  • 1.7K
  • 25 Oct 2020
Topic Review
Tensile Testing
Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.
  • 1.7K
  • 23 Nov 2022
Topic Review
Plasticity
In physics and materials science, plasticity, also known as plastic deformation, is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding. Plastic deformation is observed in most materials, particularly metals, soils, rocks, concrete, and foams. However, the physical mechanisms that cause plastic deformation can vary widely. At a crystalline scale, plasticity in metals is usually a consequence of dislocations. Such defects are relatively rare in most crystalline materials, but are numerous in some and part of their crystal structure; in such cases, plastic crystallinity can result. In brittle materials such as rock, concrete and bone, plasticity is caused predominantly by slip at microcracks. In cellular materials such as liquid foams or biological tissues, plasticity is mainly a consequence of bubble or cell rearrangements, notably T1 processes. For many ductile metals, tensile loading applied to a sample will cause it to behave in an elastic manner. Each increment of load is accompanied by a proportional increment in extension. When the load is removed, the piece returns to its original size. However, once the load exceeds a threshold – the yield strength – the extension increases more rapidly than in the elastic region; now when the load is removed, some degree of extension will remain. Elastic deformation, however, is an approximation and its quality depends on the time frame considered and loading speed. If, as indicated in the graph opposite, the deformation includes elastic deformation, it is also often referred to as "elasto-plastic deformation" or "elastic-plastic deformation". Perfect plasticity is a property of materials to undergo irreversible deformation without any increase in stresses or loads. Plastic materials that have been hardened by prior deformation, such as cold forming, may need increasingly higher stresses to deform further. Generally, plastic deformation is also dependent on the deformation speed, i.e. higher stresses usually have to be applied to increase the rate of deformation. Such materials are said to deform visco-plastically.
  • 1.7K
  • 10 Nov 2022
Topic Review
Power Generation Using Dielectric Elastomers
Power generation using dielectric elastomer (DE) artificial muscle is attracting attention because of its light weight, low cost, and high-efficiency. Since this method is a system that produces electricity without emitting carbon dioxide nor using rare earths, it would contribute to the goal of environmental sustainability. 
  • 1.7K
  • 30 Jun 2021
Topic Review
List of Meteor Air Bursts
Many explosions recorded in Earth's atmosphere are likely to be caused by the air bursts that result from meteors exploding as they hit the thicker part of the atmosphere. These types of meteors are also known as fireballs or bolides with the brightest known as superbolides. Before entering Earth's atmosphere, these larger meteors were originally asteroids and comets of a few to several tens of metres in diameter, contrasting with the much smaller and much more common "shooting stars". The most powerful recorded air burst is the 1908 Tunguska event. Extremely bright fireballs traveling across the sky are often witnessed from a distance, such as the 1947 Sikhote-Alin meteor and the 2013 Chelyabinsk meteor, both in Russia. If the bolide is large enough, fragments may survive such as the Chelyabinsk meteorite. Modern developments in infrasound detection by the Comprehensive Nuclear-Test-Ban Treaty Organization and infrared Defense Support Program satellite technology have increased the likelihood of detecting airbursts.
  • 1.7K
  • 11 Nov 2022
Topic Review
SU(2)/SU(3) Quantum Yang-Mills theory Thermodynamics
An outline of the main, purely theoretical ideas involved in Quantum Yang-Mills thermodynamics is given and implications thereof for applications in cosmology, particle, plasma, and condensed-matter physics are sketched. On the theoretical side, we elucidate the concepts of the thermal ground states of the deconfining and preconfining phases together with their gauge-mode excitations , and we discuss the quantum vacuum of the confining phase including its finite-extent excitations. On the application side, we briefly mention how deconfining SU(2) Yang-Mills thermodynamics, when postulated to describe thermal photon gases, predicts a modified temperature (T) -redshift (z) relation for the Cosmic Microwave Background (CMB) which, in turn, implies a rearrangement of the dark sector well before the onset of nonlinear structure formation. All-z fits of the ensuing cosmological model to the observed angular power spectra  (CMB) yield a value for the present Hubble parameter H0 agreeing with that extracted from local distance measurements, a baryon density of the present Universe being about 30% smaller than the standard value obtained from Big-Bang-Nucleosynthesis (BBN) but matching direct censuses, and a late onset of reionisation of the Universe agreeing with the observation of the Gunn-Peterson trough in high-z quasar spectra. We also mention how the three lepton families of the Standard Model of Particle Physics (SMPP) could emerge as solitons immersed into the confining  phases of three SU(2) Yang-Mills theories, subject to mixing of their Cartan subalgebras. In particular, the electron and its neutrino would be represented by 1-fold selfintersecting and single, stable center-vortex loops with a wealth of implications for strongly correlated charge carriers in the two spatial dimensions of  certain condensed-matter systems as well as ultra hot plasmas.
  • 1.7K
  • 30 Oct 2020
Topic Review
Crystallization of LiNbO3
Due to its piezoelectric, ferroelectric, nonlinear optics, and pyroelectric properties, LiNbO3 crystal has found its wide applications in surface acoustic wave (SAW) devices, optical waveguides, optical modulators, and second-harmonic generators (SHG). LiNbO3 crystallized as R3c space group below Curie temperature shows spontaneous polarization that leads to its ferroelectric and piezoelectric properties. Physical and chemical characteristics of LiNbO3 are mainly determined by Li/Nb ratio, impurity cations, vacancies in a cation sublattice. Different sizes of LiNbO3 ranging from nanoscale and microscale to bulk size have been synthesized by solid state method, hydrothermal/solvothermal method, Czochralski (Cz) growth method, etc. Most basic and applied studies of LiNbO3 focus on its bulk single crystal.
  • 1.7K
  • 17 Dec 2021
Topic Review
FTIR for Vehicle Exhaust Emissions
In a Fourier Transform InfraRed (FTIR) spectrometer, some of the infrared (IR) radiation is absorbed by the sample, and some of it is passed through (transmitted). The resulting molecular absorption and transmission response can be used to identify the components of the sample and their concentration.
  • 1.7K
  • 20 Aug 2021
Topic Review
Sound Transmission Losses in DPS
Double panel structures (DPS) are flat or curved structural designs which consist of two opposite facesheets or panels separated by a core or cavity. The cavity may be any kind of enclosed gasses while the core may be any form of solid materials which can be architecturally designed. DPS have been used in various applications for sound insulation purpose.  First, sound incident on the incident facesheet of the DPS, transmitted through the core or cavity and then radiates from the radiating facesheet of the DPS. The ratio of the sound power incident on the incident facesheet to the sound power transmitted through the radiating facesheet is referred as the sound transmission loss of the DPS. The motivation behind the wide industrial application of DPS is owing to their potential characteristics to absorb sound more effectively. Therefore, it is of utmost importance to understand the different geometry and material constituents of the facesheets as well as core/cavity of the DPS. The knowledge of this will help designers and manufacturers to produce the most effective and optimal design of DPS capable of producing very high and desirable sound transmission losses.
  • 1.7K
  • 19 Aug 2020
Topic Review
Rooftop Photovoltaic Power Station
A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories. Rooftop mounted systems are small compared to ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. Most rooftop PV stations in developed countries are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5 to 20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 Megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1-10 Megawatts.
  • 1.7K
  • 17 Nov 2022
  • Page
  • of
  • 118
Video Production Service