1000/1000
Hot
Most Recent
A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories. Rooftop mounted systems are small compared to ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. Most rooftop PV stations in developed countries are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5 to 20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 Megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1-10 Megawatts.
The urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. Estimating rooftop solar insolation is a multi-faceted process, as insolation values in rooftops are impacted by the following:
There are various methods for calculating potential solar rooftop systems including the use of Lidar[2] and orthophotos.[3] Sophisticated models can even determine shading losses over large areas for PV deployment at the municipal level.[4]
Components of a rooftop solar array:
The following section contains the most commonly utilized components of a rooftop solar array. Though designs may vary with roof type (eg. metal vs shingle), roof angle, and shading concerns, most arrays consist of some variation of the following components
Country | Cost ($/W) |
---|---|
Australia | 1.8 |
China | 1.5 |
France | 4.1 |
Germany | 2.4 |
Italy | 2.8 |
Japan | 4.2 |
United Kingdom | 2.8 |
United States | 4.9 |
For residential PV systems in 2013[8]:15 |
Country | Cost ($/W) |
---|---|
Australia | 1.7 |
China | 1.4 |
France | 2.7 |
Germany | 1.8 |
Italy | 1.9 |
Japan | 3.6 |
United Kingdom | 2.4 |
United States | 4.5 |
For commercial PV systems in 2013[8]:15 |
In the mid-2000s, solar companies used various financing plans for customers such as leases and power purchase agreements. Customers could pay for their solar panels over a span of years, and get help with payments from credits from net metering programs. As of May 2017, installation of a rooftop solar system costs an average of $20,000. In the past, it had been more expensive.[9]
Utility Dive wrote, "For most people, adding a solar system on top of other bills and priorities is a luxury" and "rooftop solar companies by and large cater to the wealthier portions of the American population."[9] Most households that get solar arrays are "upper middle-income". The average household salary for solar customers is around $100,000.[9] However, "a surprising number of low-income" customers appeared in a study of income and solar system purchases. "Based on the findings of the study, GTM researchers estimate that the four solar markets include more than 100,000 installations at low-income properties."[9]
A report released in June 2018 by the Consumer Energy Alliance that analyzed U.S. solar incentives showed that a combination of federal, state and local incentives, along with the declining net cost of installing PV systems, has caused a greater usage of rooftop solar across the nation. According to Daily Energy Insider, "In 2016, residential solar PV capacity grew 20 percent over the prior year, the report said. The average installed cost of residential solar, meanwhile, dropped 21 percent to $2.84 per watt-dc in the first quarter of 2017 versus first quarter 2015."[10] In fact, in eight states the group studied, the total government incentives for installing a rooftop solar PV system actually exceeded the cost of doing so.[10]
In 2019, the national average cost in the United States, after tax credits, for a 6 kW residential system was $2.99/W, with a typical range of $2.58 to $3.38.[11]
Due to economies of scale, industrial-sized ground-mounted solar systems produce power at half the cost (2c/kWh) of small roof-mounted systems (4c/kWh).[12]
This is an arrangement for grid connected solar power systems. In this mechanism, the excess solar power generated is exported to the electricity grid. The consumer gets credit for the amount of power exported. At the end of the billing cycle, the consumer is charged for the net or difference of power imported and power exported to the electricity grid.[13] Hence the name, net-metering.
A key point to note here is that there is no sale of solar power in this mechanism. The exported kWh are only used to adjust the imported kWh prior to the bill calculation.
In a grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A public utility commission usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.
The FIT as it is commonly known has led to an expansion in the solar PV industry worldwide. Thousands of jobs have been created through this form of subsidy. However it can produce a bubble effect which can burst when the FIT is removed. It has also increased the ability for localised production and embedded generation reducing transmission losses through power lines.[14]
A rooftop photovoltaic power station (either on-grid or off-grid) can be used in conjunction with other power components like diesel generators, wind turbines, batteries etc. These solar hybrid power systems may be capable of providing a continuous source of power.[14]
Installers have the right to feed solar electricity into the public grid and hence receive a reasonable premium tariff per generated kWh reflecting the benefits of solar electricity to compensate for the current extra costs of PV electricity.[14]
An electrical power system containing a 10% contribution from PV stations would require a 2.5% increase in load frequency control (LFC) capacity over a conventional system—an issue which may be countered by using synchronverters in the DC/AC-circuit of the PV system. The break-even cost for PV power generation was in 1996 found to be relatively high for contribution levels of less than 10%. While higher proportions of PV power generation give lower break-even costs, economic and LFC considerations impose an upper limit of about 10% on PV contributions to the overall power systems.[15]
There are many technical challenges to integrating large amounts of rooftop PV systems to the power grid.
There are solutions on multiple levels to improve the quality of distributed solar O&M, dealing with Industrial IoT approaches of automation:
Automatic panel cleaning
Automated performance monitoring
The Jawaharlal Nehru National Solar Mission of the Indian government is planning to install utility scale grid-connected solar photovoltaic systems including rooftop photovoltaic systems with the combined capacity of up to 100 gigawatts by 2022.[16]