Topic Review
Waste Derivatives in Drilling Fluids
The increased production of waste materials is a significant concern due to their effect on public health and the environment. Mismanagement of food waste, in particular, has become a major global issue, thus prompting the need for better solutions that use these materials in different applications. Among various applications, food waste can be considered to be a sustainable alternative for additives in drilling fluids used in the oil and gas drilling industry. Chemical additives to drilling fluids are necessary components to facilitate drilling operations by enhancing the fluids’ properties, including rheology and filtrate loss. Studies have demonstrated that waste-derived materials, including food waste, have the potential to provide an environmentally safe alternative to toxic conventional chemical additives used in water-based drilling fluids. 
  • 952
  • 17 Aug 2021
Topic Review
Wall Materials of Peptide Microcapsules
Microencapsulation technology can improve the utilization rate of the active peptides. Microencapsulation technology is a kind of encapsulation technology based on nanocarriers. The microencapsulation of peptides refers to the selection of appropriate wall materials and the use of physical, chemical, or physicochemical methods to embed the active peptides, in order to give play to the advantages of isolating the interaction between the active peptide and the external environment.
  • 282
  • 15 Mar 2023
Topic Review
Virus-Incorporated Biomimetic Nanocomposites
Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. 
  • 543
  • 07 Jun 2021
Topic Review
Vesicular Systems for Advanced Drug Delivery
Erythromycin (ERY) is a macrolide compound with a broad antimicrobial spectrum which is currently being used to treat a large number of bacterial infections affecting the skin, respiratory tract, intestines, bones and other systems, proving great value from a clinical point of view. Despite this major advantage, ERY has low water solubility and is not stable under acidic conditions which leads to a limited efficacy and bioavailability. Apart from this, higher doses promote drug resistance and undesirable effects. In order to overcome these disadvantages, during the past decades, a large variety of ERY formulations, including nanoparticles, have emerged. This work presents the preparation and performances reported for ERY vesicles, such as liposomes, ethosomes, niosomes, micelles, cubosomes and solid lipid nano(micro) particles. 
  • 592
  • 19 Oct 2022
Topic Review
Vat Photopolymerization
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner.
  • 557
  • 11 Oct 2023
Topic Review
Valorising Agricultural Residues through Pelletisation
The agricultural sector and its related production chains are good sources of residual biomass. The pelletisation represents an effective alternative in order to valorise these agricultural wastes. Statistics show that over 60% of the available tree pruning comes from vine and olive cultivations, justifying several authors’ interest in the energetic valorisation of this biomass material. Pelletisation increases bulk, energy density and energy content, making this fuel close to traditional fuels such as coal.
  • 321
  • 16 Feb 2022
Topic Review
UV and UV-vis Irradiation on Microalgae and Macroalgae
Bioactive compounds, such as carotenoids, and Mycosporine-like amino acids (MAAs) derived from microalgae may play a vital role in the bio and non-bio sectors. Currently, commercial sunscreens contain chemicals such as oxybenzone and octinoxate, which have harmful effects on the environment and human health; while microalgae-based sunscreens emerge as an eco-friendly alternative to provide photo protector agents against solar radiation. Algae-based exploration ranges from staple foods to pharmaceuticals, cosmetics, and biomedical applications.
  • 330
  • 30 Aug 2022
Topic Review
Types of Synthetic Materials in Bone Grafts
To decide which material is most appropriate for a given procedure, it is necessary not only to have a good understanding of the biological function (osteogenesis, osteoinduction, and osteoconduction) of each material but also to consider the patient condition, as this is an essential criterion for the incorporation of any bone graft. Bone grafts are evolving and undergoing innumerable changes and there has long been talk of synthetic bone grafts and bone substitutes to the detriment of autologous, allogeneic, or even xenogeneic grafts.
  • 254
  • 19 Jun 2023
Topic Review
Types of Scaffolds in Cartilage Regeneration
There are two main types of scaffolds: natural polymers and synthetic polymers. On the one hand, natural polymers are proteins (e.g., collagen, SF) and polysaccharides (e.g., Alg, CS, and HA derivatives). Natural polymers already have a long history of application in wound treatment. They are the closest substances to human tissue and show biocompatibility and biodegradability without toxic byproducts, and their technologies and properties have been widely investigated. Furthermore, in the form of hydrogels, they can retain a great amount of water. However, natural polymers are normally poor in mechanical strength. On the other hand, synthetic polymers have different properties. They allow the better control of formation, surface morphology, mechanical strength and physicochemical properties than natural polymers. Among them, poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL) and poly(urethanes) (PU) are the most popular candidates in osteochondral regeneration. The limitations of synthetic polymers are poor hydrophilicity, proinflammatory degradation byproducts, and unmatched degradation rates. It is noticeable that these two types of polymers are not independent.
  • 639
  • 08 Sep 2022
Topic Review
Types of Microneedle Arrays
Microneedle (MN) arrays are minimally-invasive devices that can penetrate the stratum corneum, one of the most important barriers for topically-applied drugs, thus creating a pathway for drug permeation to the dermal tissue below. MN arrays can be characterized as: (1) solid, (2) coated, (3) hollow and (4) dissolvable. They can be further categorized based on their mode of drug delivery, and the materials used for their manufacture. 
  • 935
  • 05 Jan 2023
  • Page
  • of
  • 64