Topic Review
Chimeric Antigen Receptor T Cell Therapy in AML
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that is often associated with relapse and drug resistance after standard chemotherapy or targeted therapy, particularly in older patients. Hematopoietic stem cell transplants are looked upon as the ultimate salvage option with curative intent. Adoptive cell therapy using chimeric antigen receptors (CAR) has shown promise in B cell malignancies and is being investigated in AML.
  • 123
  • 19 Jan 2024
Topic Review
Dietary Chemical Components and Enteric Methane Production
Methanogenesis is critical in cattle because it prevents accumulation of metabolic hydrogen in the rumen by serving as a reducing equivalent sink. Alternative hydrogen sinks exist, however, and these alternative sinks are affected by the ingredient and chemical composition of the diet, such that the quantity of CH4 produced by cattle varies based on dietary constituents that are fed. Diets that produce acetate liberate hydrogen to be used by methanogenic archaea to produce CH4. Conversely, propionate serves as a net hydrogen sink, and diets that increase propionate and decrease acetate result in decreased ruminal CH4 production, reflecting decreased availability of metabolic hydrogen for methanogens to reduce CO2 to CH4.
  • 217
  • 19 Jan 2024
Topic Review
Role of Ethylene in Plant Developmental Processes
Ethylene, a gaseous phytohormone, is emerging as a central player in the intricate web of plant developmental processes from germination to senescence under optimal and stressed conditions. The presence of ethylene has been noted in different plant parts, including the stems, leaves, flowers, roots, seeds, and fruits.
  • 127
  • 19 Jan 2024
Topic Review
Role of NSD3 in Cancer
Nuclear receptor-binding SET domain protein 3 (NSD3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. This amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. 
  • 238
  • 19 Jan 2024
Topic Review
Sb and Sc, and Their Modes of Action
Saccharomyces cerevisiae var. boulardii (Sb) is currently receiving significant attention as a synthetic probiotic platform due to its ease of manipulation and inherent effectiveness in promoting digestive health.
  • 117
  • 19 Jan 2024
Topic Review
LRRK2, Rab GTPases and Parkinson’s Disease
Studies point to the involvement of endolysosomal defects in parkinson’s disease (PD). The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field.
  • 472
  • 19 Jan 2024
Topic Review
Mitochondrial Impairment in the Cardiorenal Syndrome Type 4
Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD) leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria, vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells, including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain, leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the increased expression of cytokines and chemokines. Excessive chemokine stimulation results in the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS type 4. 
  • 214
  • 19 Jan 2024
Topic Review
Biomarkers in Cancer Detection, Diagnosis, and Prognosis
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. 
  • 183
  • 19 Jan 2024
Topic Review
Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual’s lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. 
  • 258
  • 19 Jan 2024
Topic Review
Pichia pastoris Strains as Powerful Cell Factories
Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. This yeast has been repurposed as a cell factory for the production of chemicals and natural products. 
  • 236
  • 19 Jan 2024
  • Page
  • of
  • 1814
Video Production Service