Topic Review
Microbial Enzyme Applied to Plastic Depolymerization
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. 
  • 1.0K
  • 28 Feb 2023
Topic Review
Fucoxanthin
Fucoxanthin is a well-known carotenoid of the xanthophyll family, mainly produced by marine organisms such as the macroalgae of the fucus genus or microalgae such as Phaeodactylum tricornutum. Fucoxanthin has antioxidant and anti-inflammatory properties but also several anticancer effects. Fucoxanthin induces cell growth arrest, apoptosis, and/or autophagy in several cancer cell lines as well as in animal models of cancer. Fucoxanthin treatment leads to the inhibition of metastasis-related migration, invasion, epithelial–mesenchymal transition, and angiogenesis. Fucoxanthin also affects the DNA repair pathways, which could be involved in the resistance phenotype of tumor cells. Moreover, combined treatments of fucoxanthin, or its metabolite fucoxanthinol, with usual anticancer treatments can support conventional therapeutic strategies by reducing drug resistance.
  • 1.0K
  • 03 Jun 2021
Topic Review
Molecular Inversion Probe
Molecular Inversion Probe (MIP) belongs to the class of Capture by Circularization molecular techniques for performing genomic partitioning, a process through which one captures and enriches specific regions of the genome. Probes used in this technique are single stranded DNA molecules and, similar to other genomic partitioning techniques, contain sequences that are complementary to the target in the genome; these probes hybridize to and capture the genomic target. MIP stands unique from other genomic partitioning strategies in that MIP probes share the common design of two genomic target complementary segments separated by a linker region. With this design, when the probe hybridizes to the target, it undergoes an inversion in configuration (as suggested by the name of the technique) and circularizes. Specifically, the two target complementary regions at the 5’ and 3’ ends of the probe become adjacent to one another while the internal linker region forms a free hanging loop. The technology has been used extensively in the HapMap project for large-scale SNP genotyping as well as for studying gene copy alterations and characteristics of specific genomic loci to identify biomarkers for different diseases such as cancer. Key strengths of the MIP technology include its high specificity to the target and its scalability for high-throughput, multiplexed analyses where tens of thousands of genomic loci are assayed simultaneously.
  • 1.0K
  • 02 Nov 2022
Topic Review
Skeletal Muscle
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. This review summarizes recent insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. 
  • 1.0K
  • 11 Oct 2021
Topic Review
O-GlcNAcylation
O-GlcNAcylation is a posttranslational modification that occurs at serine and threonine residues of protein substrates by the addition of O-linked β-d-N-acetylglucosamine (GlcNAc) moiety. Two enzymes are involved in this modification: O-GlcNac transferase (OGT), which attaches the GlcNAc residue to the protein substrate, and O-GlcNAcase (OGA), which removes it. This biological balance is important for many biological processes, such as protein expression, cell apoptosis, and regulation of enzyme activity.
  • 1.0K
  • 04 Mar 2021
Topic Review
 m6A RNA Methylation Mechanism
Epitranscriptomic modifications can affect every aspect of RNA biology, including stability, transport, splicing, and translation, participate in global intracellular mRNA metabolism, and regulate gene expression and a variety of biological processes. N6-methyladenosine (m6A) as the most prevalent modification contributes to normal embryonic brain development and memory formation. 
  • 1.0K
  • 08 Jun 2022
Topic Review
Yeast Hybrids in Brewing
Microbiology has long been a keystone in fermentation, and innovative yeast molecular biotechnology continues to represent a fruitful frontier in brewing science. Consequently, modern understanding of brewer’s yeast has undergone significant refinement over the last few decades.
  • 1.0K
  • 22 Feb 2022
Topic Review
Spondyloarthritis
Spondyloarthritis (SpA) is a group of autoimmune inflammatory diseases that leads to inflammation of the spine or peripheral joints, namely axial SpA and peripheral SpA respectively. SpA is a painful and debilitating disease that affects mostly individuals aged 45 years old or younger. Trillions of microorganism reside in the human gut and interact with the immune system, and these reactions may trigger different autoimmune diseases including SpA. Dysbiosis, an imbalance of gut microbiota, may affect the mucosal barrier integrity, resulting in gut inflammation. In animal study, none of the germfree mice developed features of SpA. However, after introduction of gut commensal, over 80% of them developed features of SpA. Different gut microbiome compositions also affect the degree of gut inflammation in HLA-B27 transgenic rats. Moreover, nearly 50% of the SpA patients had subclinical gut inflammation. Chronic gut inflammation also correlated with increased bone marrow edema on MRI in SpA patients. These findings suggest there is a link between gut microorganisms and the occurrence of SpA.
  • 1.0K
  • 18 Nov 2020
Topic Review
Cytoskeleton
Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment.
  • 1.0K
  • 20 Apr 2023
Topic Review
Techniques of Making Edible Coatings
Edible coatings are made from natural food-grade materials, such as hydrocolloids (polysaccharides, proteins), lipids, and emulsifiers, produced with different techniques, such as dipping (immersing), spraying, spreading, brushing, pressing them/thermoforming, or extrusion. The most used method for coating is immersing, where food is dipped in a liquid containing food matrices, forming a film around the food and protecting all the components present.
  • 1.0K
  • 15 Sep 2023
  • Page
  • of
  • 1814
Video Production Service