Topic Review
Membrane Transporters Involved in Iron Trafficking
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria.
  • 336
  • 01 Aug 2023
Topic Review
Virus Like Particles in Yeast
Several structural viral proteins can self-assemble to form a capsid without a viral genome. This property of viral proteins has been exploited for constructing virus-like particles (VLPs). The most important feature of VLPs is that they resemble the capsid of the original virus, but they are empty shells that do not contain the viral genome, and thus, they elicit an immune response without propagating inside the cells. VLPs have been produced in Escherichia coli and in mammalian, plant, insect, and yeast cells . 
  • 292
  • 01 Aug 2023
Topic Review
Necessity of SMA Newborn Screening
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
  • 274
  • 01 Aug 2023
Topic Review
Targeting Iron-Sulfur Clusters in Cancer
Iron dysregulation is a hallmark of cancer, characterized by an overexpression of genes involved in iron metabolism and iron-sulfur cluster (ISC) biogenesis. Dysregulated iron homeostasis increases intracellular labile iron, which may lead to the formation of excess cytotoxic radicals and make it vulnerable to various types of regulated cell death, including ferroptosis. The inhibition of ISC synthesis triggers the iron starvation response, increasing lipid peroxidation and ferroptosis in cancer cells treated with oxidative stress-inducing agents. Various methods, such as redox operations, iron chelation, and iron replacement with redox-inert metals, can destabilize or limit ISC formation and function, providing potential therapeutic strategies for cancer treatment. Targeting ISCs to induce ferroptosis represents a promising approach in cancer therapy.
  • 362
  • 01 Aug 2023
Topic Review
Percutaneous Cryoablation in Bone and Soft Tissue Tumors
In the rapidly evolving field of interventional oncology, minimally invasive methods, including CT-guided cryoablation, play an increasingly important role in tumor treatment, notably in bone and soft tissue cancers. Cryoablation works using compressed gas-filled probes to freeze tumor cells to temperatures below −20 °C, exploiting the Joule–Thompson effect. This cooling causes cell destruction by forming intracellular ice crystals and disrupting blood flow through endothelial cell damage, leading to local ischemia and devascularization. Coupling this with CT technology enables precise tumor targeting, preserving healthy surrounding tissues and decreasing postoperative complications.
  • 381
  • 01 Aug 2023
Topic Review
Management Strategies of Peach–Potato Aphid Myzus persicae
The peach–potato aphid, Myzus persicae (Sulzer), is one of the most important pests of economic crops. It damages the plant directly by consuming nutrients and water and indirectly by transmitting plant viruses. This pest has the unenviable title of having resistance to more insecticides than any other herbivorous insect pest. Due to the development of its resistance to chemical pesticides, it is necessary to find other control options. Consequently, increased efforts worldwide have been undertaken to develop new management approaches for M. persicae. 
  • 366
  • 01 Aug 2023
Topic Review
Metal-Based Nanoparticles for Cancer Metalloimmunotherapy
Metalloimmunotherapy offers a new form of cancer immunotherapy that utilizes the inherent immunomodulatory features of metal ions to enhance anticancer immune responses. Their versatile functionalities for a multitude of direct and indirect anticancer activities together with their inherent biocompatibility suggest that metal ions can help overcome the current issues associated with cancer immunotherapy. However, metal ions exhibit poor drug-like properties due to their intrinsic physicochemical profiles that impede in vivo pharmacological performance, thus necessitating an effective pharmaceutical formulation strategy to improve their in vivo behavior. Metal-based nanoparticles provide a promising platform technology for reshaping metal ions into more drug-like formulations with nano-enabled engineering approaches. 
  • 297
  • 01 Aug 2023
Topic Review
Gut Microbiota and Adipose Tissue Microenvironment in Obesity
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity.
  • 294
  • 31 Jul 2023
Topic Review Video Peer Reviewed
The Domestication of Humans
The domestication of humans is not an issue of domesticity but of the effects of the domestication syndrome on a hominin species and its genome. These effects are well expressed in the ‘anatomically modern humans’, in their physiology, behavior, genetic defects, neuropathology, and distinctive neoteny. The physiological differences between modern (gracile) humans and their ancestors, robust Homo sapiens types, are all accounted for by the domestication syndrome. From deductions we can draw about early human behavior, it appears that modifications are attributable to the same cause. The domestication hypothesis ascribes the initiation of the changes to selective breeding introduced by the consistent selection of neotenous features. That would trigger genetic pleiotropy, causing the changes that are observed.
  • 644
  • 31 Jul 2023
Topic Review
Iron Metabolism and Mechanisms of Ferroptosis
Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial–mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell–cell and cell–cell matrix junctions, cell polarity, etc.
  • 244
  • 31 Jul 2023
  • Page
  • of
  • 1815
ScholarVision Creations