Topic Review
T Lymphocytes in Brief
T lymphocytes, often referred to as T cells, are a crucial component of the immune system. These specialized white blood cells originate in the bone marrow and undergo maturation in the thymus gland. T cells are known for their remarkable specificity in recognizing antigens presented by other cells. This recognition is mediated by the T cell receptor (TCR) on their surface. There are two primary subsets of T lymphocytes: CD4+ T cells (helper T cells) and CD8+ T cells (cytotoxic T cells). Helper T cells assist in coordinating immune responses, while cytotoxic T cells directly target and destroy infected or abnormal cells. T cells also have memory subsets that provide long-term immunity. T lymphocytes play pivotal roles in defending the body against infections, regulating immune responses, and contributing to the immune system's ability to distinguish between self and non-self. Their diverse functions and clinical significance make T cells a subject of extensive research and therapeutic exploration in the field of immunology.
  • 449
  • 08 Oct 2023
Topic Review
T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy.
  • 836
  • 29 Mar 2022
Topic Review
T Lymphocyte
Exosomes are extracellular vesicles (EV) of endosomal origin (multivesicular bodies, MVB) constitutively released by many different eukaryotic cells by fusion of MVB to the plasma membrane. However, inducible exosome secretion controlled by cell surface receptors is restricted to very few cell types and a limited number of cell surface receptors. Among these, exosome secretion is induced in T lymphocytes and B lymphocytes when stimulated at the immune synapse (IS) via T-cell receptor (TCR) and B-cell receptor (BCR), respectively. IS formation by T and B lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. Upon IS formation by T and B lymphocytes with antigen-presenting cells (APC) the convergence of MVB towards the microtubule organization center (MTOC), and MTOC polarization to the IS, are involved in polarized exosome secretion at the synaptic cleft. This specialized mechanism provides the immune system with a finely-tuned strategy to increase the specificity and efficiency of crucial secretory effector functions of B and T lymphocytes. Since inducible exosome secretion by antigen-receptors is a critical and unique feature of the immune system this entry considers the study of the traffic events leading to polarized exosome secretion at the IS and some of their biological consequences.
  • 2.0K
  • 29 Oct 2020
Topic Review
T Helper Cells in IBD
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
  • 1.2K
  • 28 Oct 2020
Topic Review
T Cells in Cancer
T cells play a key role in tumour surveillance, both identifying and eliminating transformed cells.
  • 364
  • 06 Apr 2021
Topic Review
T Cells and Adaptive Immune System in SARS-CoV-2
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Prior COVID-19 research on immunogens understandably focused on nAb responses, with less interest in overall cellular immunity. Interestingly, there is data accumulating which suggests that T cell responses are an important player in both natural and adaptive immunity as well as vaccine protection against chronic COVID-19 disease.
  • 1.5K
  • 20 Feb 2023
Topic Review
T Cell-Based Therapies of HCC
The scope of therapeutic options for the treatment of hepatocellular carcinoma (HCC) has recently been expanded by immunotherapeutic regimens. T cell-based therapies, especially in combination with other treatments have achieved far better outcomes compared to conventional treatments alone. However, there is an emerging body of evidence that eliciting T cell responses in immunotherapeutic approaches is insufficient for favorable outcomes.
  • 453
  • 29 Mar 2022
Topic Review
T Cell Senescence and EOC
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression.
  • 572
  • 25 Aug 2021
Topic Review
T Cell Response to SARS-CoV-2 Coinfection and Comorbidities
COVID-19 has become an increasing global health issue. Adaptive immune cells, especially T cells, have been extensively investigated in regard to SARS-CoV-2 infection. However, human health and T cell responses are also impacted by many other pathogens and chronic diseases.
  • 270
  • 22 Feb 2023
Topic Review
T Cell Immunotherapy in Acute Myeloid Leukemia
Acute myeloid leukemia (AML) is a heterogeneous disease associated with various alterations in T cell phenotype and function leading to an abnormal cell population, ultimately leading to immune exhaustion. However, restoration of T cell function allows for the execution of cytotoxic mechanisms against leukemic cells in AML patients. Therefore, long-term disease control, which requires multiple therapeutic approaches, includes those aimed at the re-establishment of cytotoxic T cell activity. AML treatments that harness the power of T lymphocytes against tumor cells have rapidly evolved over the last 3 to 5 years through various stages of preclinical and clinical development. These include tissue-infiltrated lymphocytes (TILs), bispecific antibodies, immune checkpoint inhibitors (ICIs), chimeric antigen receptor T (CAR-T) cell therapy, and tumor-specific T cell receptor gene-transduced T (TCR-T) cells.
  • 550
  • 24 Dec 2021
  • Page
  • of
  • 1815
ScholarVision Creations