Topic Review
The Olive Orchard Mosaic
The olive tree is an evergreen plant with a remarkable water control process under water stress conditions. The production of olive oil in Portugal and other countries of the Mediterranean region has greatly increased. Intensification efforts have focused on the growth of the planted area, but also on the increase of the orchards density and the implementation of irrigation systems. Concerns about possible negative impacts of modern olive orchard production have arisen, questioning the trade-offs between the production benefits and the environmental costs. Therefore, it is of great importance to review the research progress made regarding agronomic options that preserve ecosystem services in high-density irrigated olive orchards. To better understand these technical options, it is equaly important to define the different types of olive orchards that can be found in olive-growing countries, such as Portugal, where the olive orchards mosaic includes Traditional (TD: 50–200 trees ha−1), Medium-Density (MD: 201–400 trees ha−1), High-Density (HD: 401–1500 trees ha−1), and Super-High-Density (SHD: 1501–2500 trees ha−1) systems.
  • 412
  • 13 Jul 2023
Topic Review
The Non-Coding RNA Language
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for a proper homeostasis of all the organisms and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are transcriptional products of the genomic output with regulatory function and they can act as communication signals between cells, being involved either in homeostasis or dysbiosis of the holobiont. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs using specific extracellular conveyors that will travel to reach the target cell and will be translated into a regulatory response by a dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among cells. This review analyzes the current knowledge about the role of non-coding RNAs in cell-to-cell communication, with a special focus in the signaling between cells in multi-organism consortia.
  • 912
  • 28 Oct 2020
Topic Review
The NLRP3 Inflammasome
As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
  • 1.6K
  • 24 Aug 2020
Topic Review
The NIMA Family of Kinases
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases.
  • 751
  • 12 Apr 2022
Topic Review
The Nice Ocular MAlignancy Biobank
Ophthalmic malignancies include various rare neoplasms involving the conjunctiva, the uvea, or the periocular area. These tumors are characterized by their scarcity as well as their histological, and sometimes genetic, diversity. Uveal melanoma (UM) is the most common primary intraocular malignancy. UM raises three main challenges highlighting the specificity of ophthalmic malignancies. First, UM is a very rare malignancy with an estimated incidence of 6 cases per million inhabitants. Second, tissue biopsy is not routinely recommended due to the risk of extraocular dissemination. Third, UM is an aggressive cancer because it is estimated that about 50% of patients will experience metastatic spread without any curative treatment available at this stage. These challenges better explain the two main objectives in the creation of a dedicated UM biobank. First, collecting UM samples is essential due to tissue scarcity. Second, large-scale translational research programs based on stored human samples will help to better determine UM pathogenesis with the aim of identifying new biomarkers, allowing for early diagnosis and new targeted treatment modalities. Other periocular malignancies, such as conjunctival melanomas or orbital malignancies, also raise specific concerns. In this context, the number of biobanks worldwide dedicated to ocular malignancies is very limited.
  • 315
  • 04 May 2023
Topic Review
The NFX1 Gene
The official name of the gene NFX1 in humans (Gene ID 4799 at NCBI) is Nuclear Transcription Factor, X-box binding 1. It is also known as NF-X1, NFX-1, NF.X1, NFX2, Tex42, and TEG-42 in the literature. For clarity, we will use the italicized term NFX1 for the human gene, and we will use NFX1 or isoform-specific names when discussing the human gene products. Regardless of this nomenclature, NFX1 has homologs across species. 
  • 771
  • 05 May 2021
Topic Review
The Next-Generation Immune Checkpoint LAG-3
The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era.
  • 650
  • 13 Jan 2021
Topic Review
The New Green Challenge in Urban Planning
The creation of green areas within urban centers was born as a response to profoundly different problems, such as the demographic increase and the progressive urbanization of landscapes. Moreover, up to date, the genetics of plants has not been considered for urban contexts. Considering the multitude of urban contexts, purposes, and needs for which green spaces in cities are created, it is today very challenging to provide an exhaustive definition of ‘urban area’ and its relative ‘urban vegetation’, since the geographic, climatic, and resource-related opportunities, and constraints, are not equally distributed factors across the world and specific for each context. Furthermore, urban vegetation can also include cultural plant typology with agricultural interest related to food production, such as the horticultural species.
  • 573
  • 08 Sep 2022
Topic Review
The Neuroprotective Potentiality of Flavonoids on Alzheimer’s Disease
Flavonoids are ubiquitous compounds of plants, produced by plants for growth and defense against all kinds of stress, including cold tolerance. More than 6000 different flavonoids have been identified, the primary sources of which are apples, red fruits, onions, citrus fruits, nuts, and beverages such as tea, coffee, beer, and red wine. These compounds, derived from phenol, are particularly interesting for their ability to cross the blood–brain barrier and for their multi-target activity. Several studies have described flavonoids to exhibit relevant biologic activities involving the neuronal antioxidants, as well as anti-amyloidogenic properties, acting as metal chelators, showing anti-inflammatory properties, and ameliorating cognition and neuroprotection.
  • 720
  • 12 Dec 2022
Topic Review
The Neuroprotective Effect of Hydrogen Sulfide
Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant.
  • 398
  • 14 Jul 2023
  • Page
  • of
  • 1815
ScholarVision Creations