Topic Review
Adaptive Response to Environmental Stress
Exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposures; this adapative situation is referred as ‘hormesis’. Environmental, physical and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair- and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions studies as examplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposures doses to environmental stressors, having benefit for the maintenance of healthy status.
  • 2.1K
  • 26 Oct 2020
Topic Review
FoxO1
FoxO1 is a conserved transcription factor involved in energy metabolism. It is tightly regulated by modifications on its mRNA and protein and responds to environmental nutrient signals. FoxO1 controls the transcription of downstream genes mediating metabolic regulation. Dysfunction of FoxO1 pathways results in several metabolic diseases, including diabetes, obesity, non-alcoholic fatty liver disease, and atherosclerosis.
  • 2.1K
  • 07 Jun 2021
Topic Review
Molecular Breeding in Plants
Plant breeding is a long and tedious process involving the generation of large populations through controlled crosses and the final selection of top individuals, the future new varieties. This process can take between 5 years in the case of horticultural crops to 15 years in the case of perennial fruit crops or 25 years in forest species. Plant breeding is an applied science, insofar as it is focused on solving specific problems, such as productivity, resistance to biotic and abiotic stresses, fruit quality, postharvest performance and sensorial attributes. In this context, a critical decision is the choice of genotypes that are used as parents. Additionally, the management, phenotyping and selection process of these seedlings are the main factors limiting the generation of new cultivars. In order to improve efficiency and sturdiness of plant breeding programs in relation to parent and seedling selection, the implementation of molecular tools is an essential requirement, including development of Marker Assisted Selection (MAS) strategies. On the other hand, we are facing a new molecular-biological perspective based on new methodologies that are affecting the genetics theory in addition to the definition of gene and Central Dogma of Molecular Biology (CDMB). This new molecular perspective, open new possibilities to improve the use of molecular tools in plant breeding. The goal of this review is the discussion about the new perspective of Plant Breeding in the context of the present Postgenomic era.
  • 2.1K
  • 26 Oct 2020
Topic Review
Ferritin
Ferritin is a universal intracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload. Ferritin is found in most tissues as a cytosolic protein, but small amounts are secreted into the serum where it functions as an iron carrier. Plasma ferritin is also an indirect marker of the total amount of iron stored in the body; hence, serum ferritin is used as a diagnostic test for iron-deficiency anemia. Aggregated ferritin transforms into a toxic form of iron called hemosiderin. Ferritin is a globular protein complex consisting of 24 protein subunits forming a hollow nanocage with multiple metal–protein interactions. Ferritin that is not combined with iron is called apoferritin.
  • 2.1K
  • 14 Oct 2022
Topic Review
Molecular Characterization of XX Maleness
Androgens and anti-Müllerian hormone (AMH), secreted by the foetal testis, are responsible for the development of male reproductive organs and the regression of female anlagen. Virilization of the reproductive tract in association with the absence of Müllerian derivatives in the XX foetus implies the existence of testicular tissue, which can occur in the presence or absence of SRY. Recent advancement in the knowledge of the opposing gene cascades driving to the differentiation of the gonadal ridge into testes or ovaries during early foetal development has provided insight into the molecular explanation of XX maleness.
  • 2.1K
  • 13 Oct 2021
Topic Review
Molecular Aspects of Thyroid Calcification
In thyroid cancer, calcification is mainly present in classical papillary thyroid carcinoma (PTC) and in medullary thyroid carcinoma (MTC), despite being described in benign lesions and in other subtypes of thyroid carcinomas. Thyroid calcifications are classified according to their diameter and location. At ultrasonography, microcalcifications appear as hyperechoic spots ≤ 1 mm in diameter and can be named as stromal calcification, bone formation, or psammoma bodies (PBs), whereas calcifications > 1 mm are macrocalcifications. The mechanism of their formation is still poorly understood. Microcalcifications are generally accepted as a reliable indicator of malignancy as they mostly represent PBs. In order to progress in terms of the understanding of the mechanisms behind calcification occurring in thyroid tumors in general, and in PTC in particular, we decided to use histopathology as the basis of the possible cellular and molecular mechanisms of calcification formation in thyroid cancer. We explored the involvement of molecules such as runt-related transcription factor-2 (Runx-2), osteonectin/secreted protein acidic and rich in cysteine (SPARC), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteopontin (OPN) in the formation of calcification. The present review offers a novel insight into the mechanisms underlying the development of calcification in thyroid cancer.
  • 2.1K
  • 02 Dec 2020
Biography
Dave Rubin
David Joshua Rubin (born June 26, 1976)[1] is an American political commentator and talk show host. He is the creator and host of The Rubin Report, a political talk show and podcast currently airing on YouTube and formerly part of The Young Turks Network[2] and Ora TV.[3] He previously hosted The Ben and Dave Show and The Six Pack, a podcast and radio show on Sirius XM Radio.[4] Topics Rubin fr
  • 2.1K
  • 22 Nov 2022
Topic Review
UV Radiation in DNA Damage and Repair
Prolonged exposure to ultraviolet radiation on human skin can lead to mutations in DNA, photoaging, suppression of the immune system, and other damage up to skin cancer (melanoma, basal cell, and squamous cell carcinoma).
  • 2.1K
  • 27 Dec 2021
Topic Review
VO2max Changes of Masters Athletes in Continuing Training
Elite masters endurance athletes are considered models of optimal healthy aging due to the maintenance of high cardiorespiratory fitness (CRF) until old age. Whereas a drop in VO2max in masters athletes has been broadly investigated, the modifying impact of training still remains a matter of debate. Longitudinal observations in masters endurance athletes demonstrated VO2max declines between −5% and −46% per decade that were closely related to changes in training volume.
  • 2.1K
  • 09 Sep 2022
Topic Review
Human–Environment Relationships: Culture and Pedagogy
Human culture can be regarded as the general context where the human–environment relationships take place and develop. Interestingly, studies on human culture and cultural evolution have been enriched with some novel perspectives that appear to dovetail with recent developments in evolutionary biology. All this allows a fresh and promising understanding of the fundamentals of human-environment interaction, according to which the environment can be shown to exert a pedagogical role for humanity, and humanity can be understood as a species modifying the environment to the aim of modifying itself.
  • 2.1K
  • 23 Feb 2022
  • Page
  • of
  • 1814
Video Production Service