Topic Review
Tracheophyta
Vascular plants (from la vasculum 'duct'), also called tracheophytes (/trəˈkiː.əˌfaɪts/) or collectively Tracheophyta (from grc τραχεῖα ἀρτηρία (trakheîa artēría) 'windpipe', and φυτά (phutá) 'plants'), form a large group of land plants (c. 300,000 accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue (the phloem) to conduct products of photosynthesis. Vascular plants include the clubmosses, horsetails, ferns, gymnosperms (including conifers) and angiosperms (flowering plants). Scientific names for the group include Tracheophyta,:251 Tracheobionta and Equisetopsida sensu lato. Some early land plants (the rhyniophytes) had less developed vascular tissue; the term eutracheophyte has been used for all other vascular plants, including all living ones. Historically, vascular plants were known as "higher plants," as it was believed that they were further evolved than other plants due to being more complex organisms. However, this is an antiquated remnant of the obsolete scala naturae, and the term is generally considered to be unscientific.
  • 1.7K
  • 08 Nov 2022
Topic Review
Two-Line Hybrid Rice Breeding
This entry enlightens a deep understanding of the molecular control of MF in EGMS liens and exploring the regulatory driving forces that function efficiently during plant adaptation under a changing environment. 
  • 1.7K
  • 11 Nov 2020
Topic Review
Beneficial health properties of common natural phenolic acids
Phenolic acids comprise a group of natural compounds that are present in a wide range of herbs and other species of the plant kingdom. This work focuses on the most common natural occurring phenolic acids (caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) and gives a summary of their recently reported health related effects that mainly link to their antioxidant properties. A number of in vitro and in vivo animal studies has been screened by the authors who report on most important research findings on each individual phenolic acid (or natural mixtures of them) while also formulating a number of conclusions and recommendations for future work in this scientific field.
  • 1.7K
  • 24 Oct 2020
Topic Review
Structural Change in Agriculture
It is common sense that it needs social and economic perspectives to understand structural changes in agriculture. The current study asserts that, likewise, the integration of the farm level (micro), the sectoral level (meso), and the societal level (macro) are needed to gain insight into the system of agricultural structures.
  • 1.7K
  • 13 Jul 2021
Topic Review
One-Carbon Metabolism Modulates Ageing and Neurodegeneration
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. 
  • 1.7K
  • 12 Jan 2022
Topic Review
Mopane Worm
Fast-growing and highly adaptable avian birds such as quail (Coturnix coturnix) possess great potential to meet the growing demand for animal protein by the rapidly increasing human population, and would contribute immensely to global food production and nutritional security. However, overreliance on conventional protein sources such as fish and soybean meals during the formulation of quail diets is economically and environmentally unsustainable. Alternatively, insect-based protein sources such as Gonimbrasia belina, commonly known as mopane worm (MW), can be used to increase quail production due to their high biological value and low feed-food competition. Indeed, MW is highly nutritious, with an average protein content of 55% and a well-balanced amino acid profile. Thus, its incorporation in quail diets could provide great potential to alleviate nutritional deficiencies in quail production and allow for their sustainable intensification.
  • 1.7K
  • 20 May 2022
Topic Review
Epstein–Barr Virus and Human Papillomavirus
High-risk human papillomavirus (HR-HPV) is etiologically associated with the development and progression of cervical cancer, although other factors are involved. Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway), and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression (indirect pathway). However, further studies are needed for a better understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis, in which in situ hybridization (ISH) and/or immunohistochemical methods are mandatory for discriminating the cell type infected by EBV.
  • 1.7K
  • 04 Nov 2020
Topic Review
DOF Transcription Factors in Seed
The DOF (DNA BINDING WITH ONE FINGER) family of plant-specific TF (transcription factors) was first identified in maize in 1995. Since then, DOF proteins have been shown to be present in the whole plant kingdom, including the unicellular alga Chlamydomonas reinhardtii. The DOF TF family is characterised by a highly conserved DNA binding domain (DOF domain), consisting of a CX2C-X21-CX2C motif, which is able to form a zinc finger structure. Early in the study of DOF proteins, their relevance for seed biology became clear. Indeed, the PBF (PROLAMIN BINDING FACTOR), one of the first DOF proteins characterised, controls the endosperm-specific expression of the zein genes in maize. Subsequently, several DOF proteins from both monocots and dicots have been shown to be primarily involved in seed development, dormancy and germination, as well as in seedling development and other light-mediated processes. In the last two decades, the molecular network underlying these processes have been outlined, and the main molecular players and their interactions have been identified. In this review, we will focus on the DOF TFs involved in these molecular networks, and on their interaction with other proteins.  
  • 1.7K
  • 28 Oct 2020
Topic Review
Infrared Spectroscopy in Biological Studies
Infrared (IR) radiation is electromagnetic radiation with wavenumbers ranges of 12,500–10 cm−1. The IR region in the electromagnetic spectrum can be subdivided into three spectral regions, namely near-IR (NIR, 12,500–4000 cm−1), mid-IR (MIR, 4,000–400 cm−1), and far-IR (FIR, 400–10 cm−1). Accumulating evidence has shown that IR radiation has been widely investigated for biological studies and effects. The interaction between IR radiation and biomolecules enables to study the specific molecular vibrations of the sample constituents. IR spectroscopy, specifically MIR, has been used to investigate large numbers of biological samples such as cells, tissues, organ, and biofluids, providing qualitative and quantitative information that could be used for detection and classification. Notably, FTIR spectroscopy is considered a promising tool to study and analyze biological samples using MIR radiation. 
  • 1.7K
  • 09 Jan 2023
Topic Review
Bioactive Lipids in Food Applications
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Nanotechnology is a promising technology that can be used to overcome many of these limitations. Different kinds of nanoscale delivery systems have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability.
  • 1.7K
  • 27 Mar 2021
  • Page
  • of
  • 1746
Video Production Service