Topic Review
Antimony/Bismuth Chalcohalides
Despite their comparable performance to commercial solar systems, lead-based perovskite (Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial applications. To address these issues, two types of Pb-free materials have been proposed as alternatives to Pb-perovskite: perovskite-based and non-perovskite-based materials. In this entry, we briefly introduce the crystal, energy band structures and theoretical insights of Sb/Bi chalcohalides as solar abosrbers.
  • 784
  • 26 Nov 2020
Topic Review
Applications of 3D Printing in Cosmetics
3D printing (3DP) is a manufacturing technology that produces 3D objects from a design file using layer-by-layer deposition of material. It has already found applications in the healthcare and pharmaceutical industries. There are potential uses for 3DP in the cosmetic field. 
  • 1.2K
  • 22 Nov 2022
Topic Review
Applications of Boron Nitride QDs
Boron nitride quantum dots (BNQDs) have gained increasing attention for their versatile fluorescent, optoelectronic, chemical, and biochemical properties. 
  • 767
  • 06 Apr 2021
Topic Review
Applications of Pulsed Electric Field in Vegetables
Polyphenols are a wide array of bioactive compounds that naturally occur in food sources derived from plants. They are recognized for their potential as preventive agents against chronic illnesses, such as cardiovascular diseases and diabetes. Pulsed electric field (PEF) is a processing method that implies a higher polyphenol extraction. The PEF treatment is a non-thermal technique employed for food preservation, which involves the application of short bursts of electrical power to inactivate microorganisms while minimizing any detrimental impact on the food’s quality. This implies that the PEF treatment aspires to enhance the accessibility of consumer-grade, polyphenol-abundant food products of superior quality.
  • 660
  • 08 Nov 2023
Topic Review
Apricot Kernel By-Products and Their Value
Stone fruits, such as the apricot (Prunus armeniaca L.), are frequently consumed. As such, a substantial volume of apricot waste is generated at each stage of the food supply chain, including harvesting, processing, packaging, warehousing, transportation, retailing, and eventual consumption. Apricot kernels are recognized for their abundance of bioactive compounds, including polyphenols and tocopherols, which find utility in diverse sectors including cosmetology and the food industry. Both conventional and green methods are employed, and generally, green methods lead to higher extraction efficiency. The antimicrobial properties of apricot kernel essential oil have been widely recognized, leading to its extensive historical usage in the treatment of diverse ailments. In addition, apricot kernel oil possesses the capacity to serve as a viable resource for renewable fuels and chemicals.
  • 521
  • 30 Jan 2024
Biography
Armando J. Parodi
Armando J. Parodi (born March 16, 1942) is an Argentinean glycobiologist. He did his initial education at the School of Sciences of the University of Buenos Aires. His PhD work was done under Luis Federico Leloir, a recipient of the Nobel Prize in Chemistry for his work involving the finding of sugar nucleotides and how they play a role in the making of oligosaccharides and polysaccharides. He a
  • 371
  • 08 Dec 2022
Topic Review
Aromatic Nitroderivatives
Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. 
  • 550
  • 28 May 2021
Topic Review
Atomic Carbon
Atomic carbon, systematically named carbon and λ0-methane, also called monocarbon, is a colourless gaseous inorganic chemical with the chemical formula C (also written [C]). It is kinetically unstable at ambient temperature and pressure, being removed through autopolymerisation. Atomic carbon is the simplest form of carbon, and is also the progenitor of carbon clusters. In addition, it may be considered to be the monomer of all (condensed) carbon allotropes like graphite and diamond.
  • 467
  • 28 Sep 2022
Topic Review
Atomic Radii of the Elements (Data Page)
The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context. Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory.
  • 708
  • 02 Dec 2022
Topic Review
Atomic Radius
The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions. Depending on the definition, the term may apply to atoms in condensed matter, covalently bonding in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. The value of the radius may depend on the atom's state and context. Electrons do not have definite orbits nor sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff; these are referred to as atomic orbitals or electron clouds. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms. Under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 ångströms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), and less than 1/1000 of the wavelength of visible light (400–700 nm). For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.
  • 1.4K
  • 18 Oct 2022
  • Page
  • of
  • 44
Video Production Service