Topic Review
Nature-inspired optimization algorithms
Over previous decades, many nature-inspired optimization algorithms (NIOAs) have been proposed and applied due to their importance and significance. Some survey studies have also been made to investigate NIOAs and their variants and applications. However, these comparative studies mainly focus on one single NIOA, and there lacks a comprehensive comparative and contrastive study of the existing NIOAs.
  • 7.6K
  • 11 Nov 2021
Topic Review
Peroxisomal β-Oxidation
It is not paradoxical that what has been overlooked tends to be of great importance. Peroxisomes, the widely distributed organelles in the body, play irreplaceable roles in cellular metabolism, especially in fatty acid oxidation (FAO) and the generation and elimination of reactive oxygen species (ROS).
  • 5.0K
  • 15 Jul 2022
Topic Review
Quantum-classical system
A quantum-classical system is a system consisting of two interacting subsystems, one of which behaves classically, and the other requires a quantum description. 
  • 2.5K
  • 29 Oct 2020
Topic Review
A discrete quantum momentum operator
We introduce finite-differences derivatives intended to be exact when applied to the real exponential function. We want to recover the known results of continuous calculus with our finite differences derivatives but in a discrete form. The purpose of this work is to have a discrete momentum operator suitable for use as an operator in discrete quantum mechanics theory.
  • 2.2K
  • 24 Aug 2021
Biography
Boris Stoyanov
Boris Stoyanov is a theoretical physicist working on Membrane Theory, Supergravity and Superstring Theory. He is the Principal and Permanent Member of SUGRA INSTITUTE, Executive Director of BRANE HEPLAB and the Giordano Bruno Professor of Membrane Theory at DARK MODULI INSTITUTE. Boris Stoyanov is a relatively young theoretical physicist dealing with the exclusive theories of supergravity, super
  • 2.1K
  • 01 Sep 2022
Topic Review
SU(2)/SU(3) Quantum Yang-Mills theory Thermodynamics
An outline of the main, purely theoretical ideas involved in Quantum Yang-Mills thermodynamics is given and implications thereof for applications in cosmology, particle, plasma, and condensed-matter physics are sketched. On the theoretical side, we elucidate the concepts of the thermal ground states of the deconfining and preconfining phases together with their gauge-mode excitations , and we discuss the quantum vacuum of the confining phase including its finite-extent excitations. On the application side, we briefly mention how deconfining SU(2) Yang-Mills thermodynamics, when postulated to describe thermal photon gases, predicts a modified temperature (T) -redshift (z) relation for the Cosmic Microwave Background (CMB) which, in turn, implies a rearrangement of the dark sector well before the onset of nonlinear structure formation. All-z fits of the ensuing cosmological model to the observed angular power spectra  (CMB) yield a value for the present Hubble parameter H0 agreeing with that extracted from local distance measurements, a baryon density of the present Universe being about 30% smaller than the standard value obtained from Big-Bang-Nucleosynthesis (BBN) but matching direct censuses, and a late onset of reionisation of the Universe agreeing with the observation of the Gunn-Peterson trough in high-z quasar spectra. We also mention how the three lepton families of the Standard Model of Particle Physics (SMPP) could emerge as solitons immersed into the confining  phases of three SU(2) Yang-Mills theories, subject to mixing of their Cartan subalgebras. In particular, the electron and its neutrino would be represented by 1-fold selfintersecting and single, stable center-vortex loops with a wealth of implications for strongly correlated charge carriers in the two spatial dimensions of  certain condensed-matter systems as well as ultra hot plasmas.
  • 2.0K
  • 30 Oct 2020
Topic Review
Time Regulated Dynamics
How parameters such as interaction, iteration, frequency of iteration and time can express in a simple manner a nonlinear dynamics? Considering a system with stationary PDF and ergodic properties, the mathematical framework reveals a constant oscillation of information flow in the system. Those parameters mentioned before can start chaotic process in the previous system generating infinite random sequences as Per Martin-Löf suggested in his work "Complexity oscillations in infinite binary sequences". In this way the non ergodic properties of system express observable oscillations in which time lengths regulations can be used as a tool for PDF constraint and  phase space formations.
  • 1.3K
  • 30 Oct 2020
Topic Review
Eightfold Way
In physics, the eightfold way is an organizational scheme for a class of subatomic particles known as hadrons that led to the development of the quark model. American physicist Murray Gell-Mann and Israeli physicist Yuval Ne'eman both proposed the idea in 1961. The name comes from Gell-Mann's (1961) paper and is an allusion to the Noble Eightfold Path of Buddhism.
  • 1.1K
  • 17 Oct 2022
Topic Review
Fractional Calculus in Electromagnetic Theory
Fractional calculus (FC) was introduced more than 300 years ago as a generalization of classical derivative and integral definitions. It is receiving increasing attention for a growing number of applications in different sciences such as physics, biology, chemistry, engineering, finance, mechanics, optics and, in particular, for modeling physical phenomena related to non-Markovian processes, signal and image processing, dielectric relaxation, viscoelasticity, electromagnetism, control theory, pharmacokinetics, fluids, heat transfer, and so on.
  • 975
  • 27 May 2022
Topic Review
ADM Formalism
The ADM formalism (named for its authors Richard Arnowitt, Stanley Deser and Charles W. Misner) is a Hamiltonian formulation of general relativity that plays an important role in canonical quantum gravity and numerical relativity. It was first published in 1959. The comprehensive review of the formalism that the authors published in 1962 has been reprinted in the journal General Relativity and Gravitation, while the original papers can be found in the archives of Physical Review.
  • 967
  • 01 Nov 2022
Topic Review
Yajnavalkya's 95 Years Cycle of Synchronisation
Yajnavalkya's 95 Years Cycle of Synchronisation is the model proposed by the great Indian philosopher Yajnavalkya which explains the mathematical concept of the synchronisation of the motions of the Sun and the Moon. Yajnavalkya invented the 95 years of the periodic cycle, when the solar and lunar motions get synchronised. This 95 years of the periodic cycle is also known as Yajnavalkya Cycle. 
  • 870
  • 25 Dec 2023
Biography
Frank J. Tipler
Frank Jennings Tipler (born February 1, 1947) is an American mathematical physicist and cosmologist, holding a joint appointment in the Departments of Mathematics and Physics at Tulane University.[1] Tipler has written books and papers on the Omega Point based on Pierre Teilhard de Chardin's religious ideas, which he claims is a mechanism for the resurrection of the dead. He is also known for hi
  • 845
  • 27 Dec 2022
Topic Review
Computational Simulations of Heart Valves
Computational methods are a cost-effective tool that can be used to evaluate the flow parameters of heart valves. Valve repair and replacement have long-term stability and biocompatibility issues, highlighting the need for a more robust method for resolving valvular disease. For example, while fluid–structure interaction analyses are still scarcely utilized to study aortic valves, computational fluid dynamics is used to assess the effect of different aortic valve morphologies on velocity profiles, flow patterns, helicity, wall shear stress, and oscillatory shear index in the thoracic aorta. It has been analyzed that computational flow dynamic analyses can be integrated with other methods to create a superior, more compatible method of understanding risk and compatibility.
  • 679
  • 10 May 2022
Topic Review Peer Reviewed
Development of the Concept of Space up to Newton
The concept of space, ubiquitous among all humans from birth, has changed profoundly in the course of the history of Western civilization, the only one to be considered here. An important contribution to this change was the theoretical elaborations of the philosophers of nature and mathematicians, started in Ancient Greece. Here, the process is considered up to Newton, when the concept of space for physicists, who then replaced the traditional philosophers of nature, took on a connotation that remained substantially undisputed for two centuries—that of absolute space. 
  • 570
  • 18 Oct 2022
Topic Review
Application of Through Glass Via Technology
Glass has emerged as a highly versatile substrate for various sensor and MEMS (microelectromechanical systems) packaging applications, including electromechanical, thermal, optical, biomedical, and RF devices, due to its exceptional properties such as high geometrical tolerances, outstanding heat and chemical resistance, excellent high-frequency electrical properties, and the ability to be hermetically sealed. In these applications, Through Glass Via (TGV) technology plays a vital role in manufacturing and packaging by creating electrical interconnections through glass substrates.
  • 521
  • 18 Jan 2024
Biography
Arkady Adamovich Brish
Arkady Adamovich Brish (May 14, 1917 – March 19, 2016) was a Soviet and Russian scientist, a designer of nuclear weapons, doctor of technical sciences, professor, Hero of Socialist Labour, Laureate of the Lenin Prize, the USSR State Prize and the RF Government Prize. Brish was born on May 14, 1917 in Minsk to a teacher's family in Belarus. In 1931–1933 he was an apprentice electrician in
  • 483
  • 01 Dec 2022
Biography
Carl H. Brans
Carl Henry Brans (/brænz/; born December 13, 1935) is an American mathematical physicist best known for his research into the theoretical underpinnings of gravitation elucidated in his most widely publicized work, the Brans–Dicke theory. A Texas , born in Dallas, Carl Brans spent his academic career in neighboring Louisiana, graduating in 1957 from Loyola University New Orleans. Having obt
  • 460
  • 01 Dec 2022
Topic Review
Emergent Dimensionality
The principle of emergent dimensionality states that 3-dimensional reality does not exist observer-independently but emerges, for a living agent, from an omnidimensional graph of nature that contains all unobservable extra dimensions.
  • 376
  • 16 Aug 2024
Topic Review
Assembly Theory
Assembly theory is a framework for quantifying selection, evolution, and complexity. It, therefore, spans various scientific disciplines, including physics, chemistry, biology, and information theory. Assembly theory is rooted in the assembly of an object from a set of basic building units, forming an initial assembly pool and from subunits that entered the assembly pool in previous assembly steps. Hence, the object is defined not as a set of point particles but by the history of its assembly, where the assembly index is the smallest number of steps required to assemble the object.
  • 145
  • 11 Nov 2024
Topic Review Peer Reviewed
On the Origins of Hamilton’s Principle(s)
This entry first provides an overview of the historical, cultural and epistemological background that is key for Hamilton’s positions on mechanics. We consider the investigations on geometrical optics in the 17th and 18th centuries, Euler’s and Lagrange’s foundations of variational calculus in the 18th century to find extrema of physical quantities expressed as infinite sums of infinitesimals (today, we would say ‘definite integrals’), and Lagrange’s introduction of a revolutionary analytical mechanics, all of which are all fertile grounds for Hamilton’s steps—first, in what we could call analytical optics, then in an advanced form of analytical mechanics. Having provided such an overview, we run through some of Hamilton’s original papers to highlight how he posed his principle(s) in the wake of his forerunners and how his principles are linked with the search for a unitary view of physics.
  • 125
  • 29 Sep 2024
ScholarVision Creations