You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Cytopathic Effect
Cytopathic effect or cytopathogenic effect (abbreviated CPE) refers to structural changes in host cells that are caused by viral invasion. The infecting virus causes lysis of the host cell or when the cell dies without lysis due to an inability to reproduce. Both of these effects occur due to CPEs. If a virus causes these morphological changes in the host cell, it is said to be cytopathogenic. Common examples of CPE include rounding of the infected cell, fusion with adjacent cells to form syncytia, and the appearance of nuclear or cytoplasmic inclusion bodies. CPEs and other changes in cell morphology are only a few of the many effects by cytocidal viruses. When a cytocidal virus infects a permissive cell, the viruses kill the host cell through changes in cell morphology, in cell physiology, and the biosynthetic events that follow. These changes are necessary for efficient virus replication but at the expense of the host cell.
  • 2.1K
  • 30 Nov 2022
Topic Review
Satellite
A satellite is a subviral agent that depends on the coinfection of a host cell with a helper virus for its replication. Satellites can be divided into two major classes: satellite viruses and satellite nucleic acids. Satellite viruses, which are most commonly associated with plants, are also found in mammals, arthropods, and bacteria. They encode structural proteins to enclose their genetic material, which are therefore distinct from the structural proteins of their helper viruses. Satellite nucleic acids, in contrast, do not encode their own structural proteins, but instead are encapsulated by proteins encoded by their helper viruses. The genomes of satellites range upward from 359 nucleotides in length for satellite tobacco ringspot virus RNA (STobRV). Most viruses have the capability to use host enzymes or their own replication machinery to independently replicate their own viral RNA. Satellites, in contrast, are completely dependent on a helper virus for replication. The symbiotic relationship between a satellite and a helper virus to catalyze the replication of a satellite genome is also dependent on the host to provide components like replicases to carry out replication. A satellite virus of mamavirus that inhibits the replication of its host has been termed a virophage. However, the usage of this term remains controversial due to the lack of fundamental differences between virophages and classical satellite viruses.
  • 2.1K
  • 20 Oct 2022
Topic Review
Application of Microbes in Pesticide Degradation
Microbes (fungal and bacterial) applications have been identified for the bio-degradation of agro-chemicals within the environment. The efficiency of microbial species to bio-degrade chemicals varies considerably. Pesticide remediation using microbes transforms harmful chemicals into nontoxic, eco-friendly, and beneficial metabolites. During pesticides decomposition, the biosorption rate for a single strain is insufficient, whereas the focus of degradation studies is rapidly turning towards microbiological consortiums, and pesticide bio-degradability is determined through pesticide components, available mechanisms, and the promiscuity of enzymes. Certain pesticides break down relatively faster than others. The slower ones are trinitrotoluene (TNT), polychlorinated biphenyl (PCBs), and pentachlorophenol (PCP). However, methomyl, pyrethroids, 1,3-dichloropropene, and atrazine can degrade faster. Axenic cultured cells are concentrated more on pesticides breakdown than microbial consortia. Earlier research has examined various microbial communities that, particularly axenic strains, may degrade chemicals quickly. During investigations, both single and a mixture of microbial strains are effective. Although axenic cells seem critical in metabolic studies, their physiology and molecular compositions are related to pesticide decomposition. The synthesis of the consortium was achieved premised on the performances of axenic colonies in pesticide degrading, and the microbial consortia became identified to have the tremendous potential.
  • 2.1K
  • 24 May 2022
Topic Review
ADP-Ribosyltransferase Toxin
ADP-ribosyltransferases (ARTs) are a well-known type of bacterial toxin. They transfer an ADP-ribose moiety from nicotinamide adenine dinucleotide (NAD+) onto a target protein to generate an ADP-ribosylated protein and nicotinamide. The bulky and negatively charged ADP-ribose moiety affects the protein function by sterically blocking interactions with partner molecules, inducing conformational changes, or creating docking sites for new interaction partners.
  • 2.1K
  • 25 Jan 2021
Topic Review
Hepacivirus C
Hepacivirus C (HCV) is a small (55–65 nm in size), enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae. The Hepacivirus C is the cause of hepatitis C and some cancers such as liver cancer (hepatocellular carcinoma, abbreviated HCC) and lymphomas in humans.
  • 2.1K
  • 15 Dec 2022
Topic Review
Physicochemistry of Deep Eutectic Solvents
Deep eutectic solvents (DESs), considered as one of the greenest families of solvents, are used in many fields, such as organic synthesis, (bio)catalysis, electrochemistry, and (bio)medicine.
  • 2.1K
  • 17 May 2023
Topic Review
Protein Glycosylation
Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections.
  • 2.1K
  • 27 Oct 2021
Topic Review
Pullulan-Degrading Enzymes
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III).
  • 2.1K
  • 04 Mar 2022
Topic Review
Microbial Mats: Extraterrestrial Life Models
Extant microbial mats already present on Earth provide useful working analog models for the exploration of life in extraterrestrial hydrospheres.
  • 2.1K
  • 08 Sep 2021
Topic Review
Bio-Pigments Synthesized by Marine Bacteria
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. 
  • 2.1K
  • 06 Jan 2021
Topic Review
Arbuscular Mycorrhizal Fungi and Microbes Interaction
Arbuscular mycorrhizal fungi (AMF) and soil microbe interactions are among the most important and influential processes that occur, as they significantly influence the plant growth and soil structure properties. Their interactions may be of crucial importance to the sustainable, low-input productivity of paddy ecosystems.
  • 2.1K
  • 16 Jun 2022
Topic Review
Phages and Intestinal Dysbiosis
Gastrointestinal tract microbiota plays a key role in the regulation of the pathogenesis of several gastrointestinal diseases. In particular, the viral fraction, composed essentially of bacteriophages, influences homeostasis by exerting selective pressure on the bacterial communities living in the tract. The inflamed gut is associated with an SOS response regulated by an increase in resident intestinal pathogenic bacteria, loss of phage diversity, and induction of prophages.
  • 2.1K
  • 09 Nov 2020
Topic Review
Mechanisms of Phase Variation
Bacteria live in environments that are in constant flux, and therefore have developed numerous methods to adapt to their ever-changing surroundings. One of these methods of adaptation is called Phase Variation (PV) which is a mechanism of -high-frequency reversible gene expression switching that enables bacteria to generate heterogeneity to successfully compete in uncertain conditions. This entry details the mechanisms of PV and takes a look at them in the context of examples from different bacterial species, with a focus on S. aureus. 
  • 2.1K
  • 02 Mar 2021
Topic Review
Clostridium perfringens as foodborne pathogen
Clostridium perfringens (Cp.) is a Gram-positive, anaerobic, nonmotile rod that forms subterminal spores. This bacterium has characteristics that contribute to its ability to cause foodborne illness by the thermotolerant spores. Meat and poultry products are identified as the main source of infection for humans. The diversity of toxins produced by Cp. has allowed it to be the cause of various diseases in humans and animals, due their rapid growth rate in warm food. In humans, it is associated with diseases related to food consumption that has been prepared or preserved in inadequate hygienic conditions, meanwhile the toxin causes necrotic enteritis in broilers.
  • 2.0K
  • 21 Oct 2020
Biography
Debasis Mitra
Dr. Debasis Mitra is an Indian Researcher, known for his numerous contributions to the application and formulation of beneficial plant growth-promoting microorganisms at the laboratory and field level for sustainable crop production, protection and development. Dr. Debasis Mitra is currently working as an Assistant Professor (Research) in the Department of Microbiology, Graphic Era (Deemed to be
  • 2.0K
  • 26 Feb 2024
Topic Review
Staphylococcal Infection
A staphylococcal infection or staph infection is an infection caused by members of the Staphylococcus genus of bacteria. These bacteria commonly inhabit the skin and nose where they are innocuous, but may enter the body through cuts or abrasions which may be nearly invisible. Once inside the body, the bacteria may spread to a number of body systems and organs, including the heart, where the toxins produced by the bacteria may cause cardiac arrest. Once the bacterium has been identified as the cause of the illness, treatment is often in the form of antibiotics and, where possible, drainage of the infected area. However, many strains of this bacterium have become antibiotic resistant; for those with these kinds of infection, the body's own immune system is the only defense against the disease. If that system is weakened or compromised, the disease may progress rapidly. Anyone can contract staph, but pregnant women, children, and people with chronic diseases or who are immuno-deficient are often more susceptible to contracting an infection.
  • 2.0K
  • 28 Nov 2022
Topic Review
Rinderpest
Rinderpest (also cattle plague or steppe murrain) was an infectious viral disease of cattle, domestic buffalo, and many other species of even-toed ungulates, including gaurs, buffaloes, large antelope, deer, giraffes, wildebeests, and warthogs. The disease was characterized by fever, oral erosions, diarrhea, lymphoid necrosis, and high mortality. Death rates during outbreaks were usually extremely high, approaching 100% in immunologically naïve populations. Rinderpest was mainly transmitted by direct contact and by drinking contaminated water, although it could also be transmitted by air. After a global eradication campaign since the mid-20th century, the last confirmed case of rinderpest was diagnosed in 2001. On 14 October 2010, the United Nations Food and Agriculture Organization (FAO) announced that field activities in the decades-long, worldwide campaign to eradicate the disease were ending, paving the way for a formal declaration in June 2011 of the global eradication of rinderpest. On 25 May 2011, the World Organisation for Animal Health announced the free status of the last eight countries not yet recognized (a total of 198 countries were now free of the disease), officially declaring the eradication of the disease. In June 2011, the United Nations FAO confirmed the disease was eradicated, making rinderpest only the second disease in history to be fully wiped out (outside laboratory stocks), following smallpox. In June 2019 the UK destroyed its stocks of rinderpest virus, held at the Pirbright Institute in Surrey, which were most of the world's retained samples. This followed the completion of a digital record of the virus's genetic code, thereby obviating the need to store samples as a protective resource in case the virus re-emerges. Researchers at Pirbright and the United Nations expressed a hope that the other samples in laboratories around the world will also be destroyed, totally eradicating the virus from the Earth. Rinderpest is believed to have originated in Asia, later spreading through the transport of cattle. The term Rinderpest is a German word meaning "cattle-plague". The rinderpest virus (RPV) is closely related to the measles and canine distemper viruses. The measles virus possibly emerged from rinderpest as a zoonotic disease around 600 BC, a period that coincides with the rise of large human settlements.
  • 2.0K
  • 13 Nov 2022
Topic Review
Influence of Sulfur on the Origin of Life
Sulfur is not only one of the most abundant elements on the Earth, but it is also essential to all living organisms. As life likely began and evolved in a hydrogen sulfide (H2S)-rich environment, sulfur metabolism represents an early form of energy generation via various reactions in prokaryotes and has driven the sulfur biogeochemical cycle since. 
  • 2.0K
  • 28 Dec 2022
Topic Review
Biomass-Based Biohydrogen Production
Biohydrogen is a sustainable energy form and a preferable substitute for fossil fuel. Biohydrogen production is eco-friendly compared to other methods of hydrogen production. It has the potential to replace conventional fossil fuels without releasing greenhouse gases. Hydrogen production from biomass depends upon the type of feedstock utilized.
  • 2.0K
  • 09 Feb 2022
Topic Review
Staphylococcus aureus in Inflammatory Diseases
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. Staphylococcus aureus (S. aureus), a Gram-positive bacterium, is one of the most notorious human pathogens, causing illnesses ranging from mild skin and wound infections to fatal sepsis or multi-organ failure. Inflammatory cells play an important role in S. aureus infection. S. aureus infection and toxins can activate a variety of inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells (ILCs), macrophages, dendritic cells (DCs), mast cells, neutrophils, eosinophils, and basophils, which release inflammatory factors that accumulate at the site of infection and cause an inflammatory response.
  • 2.0K
  • 22 Jul 2022
  • Page
  • of
  • 51
Academic Video Service