You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Cytokine Receptors Involved in Antimycobacterial Immune Response
Cytokine receptors are membrane-bound or soluble glycoproteins that serve as cytokine docking sites and inductors of a signaling cascade inside the cells. They are involved in the initiation of intracellular signaling that regulates a diverse range of biological functions including metabolism control, neural stem cell activation, inflammatory responses as well as blood cell and immune cell development and growth. The classification of cytokine receptor families is based on the structural homology of the extracellular cytokine binding domains and common intracellular signaling mechanisms. The main families include type I cytokine receptors, type II cytokine receptors, chemokine receptors, the tumor necrosis factor (TNF) receptor family, the transforming growth factor (TGF)-β receptor family, the immunoglobulin (Ig) superfamily, and the interleukin (IL)-17 receptor family.
  • 1.4K
  • 01 Apr 2022
Topic Review
The Origin of Regulatory T Cells
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant.
  • 1.4K
  • 30 May 2022
Topic Review
Targeting Arginine in COVID-19
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19. 
  • 1.4K
  • 17 Mar 2022
Topic Review
Mechanisms of Neutrophil Extracellular Trap Formation and Regulation
As one of the most important components of the innate immune system, neutrophils are always at the forefront of the response to diseases. The immune functions of neutrophils include phagocytosis, degranulation, production of reactive oxygen species, and the production of neutrophil extracellular traps (NETs). NETs are composed of deconcentrated chromatin DNA, histones, myeloperoxidase (MPO) and neutrophil elastase (NE), playing an important role in the resistance to some pathogenic microbial invasions.
  • 1.4K
  • 25 Jun 2023
Topic Review
Vitamin D in Immune System
Recent research has led to an explosion in our interest and our understanding of the role of vitamin D in regulation of immunity. At the molecular level, the hormonal form of vitamin D signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. The VDR and vitamin D metabolic enzymes are expressed throughout the innate and adaptive arms of the immune system. The advent of genome-wide approaches to gene expression profiling led to identification of numerous VDR-regulated genes implicated in regulation of innate and adaptive immunity. The molecular data infer that vitamin D signaling should boost innate immunity against pathogens of bacterial or viral origin.
  • 1.4K
  • 29 Oct 2020
Topic Review
Enzyme-Linked Immunosorbent Assay
The Enzyme-Linked Immunosorbent Assay is a versatile technique, which can be used for several applications. It has enormously contributed to the study of infectious diseases.
  • 1.4K
  • 24 Mar 2022
Topic Review
Brain Derived Neurotrophic Factor
Brain-derived neurotrophic factor (BDNF) was named after it was first extracted from porcine brain tissue and identified as a survival factor for neuronal populations that are not responsive to NGF. Beyond its role in neurons, BDNF is also released by keratinocytes, melanocytes, fibroblasts, endothelial cells, platelets, and several immune cells such as T cells, B cells, monocytes, macrophages, mast cells, and eosinophils.
  • 1.4K
  • 30 Mar 2023
Topic Review
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. The administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. 
  • 1.4K
  • 22 Jul 2022
Topic Review
Urogenital Schistosomiasis
Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder.
  • 1.4K
  • 30 Sep 2021
Topic Review
Macrophages and Cholesterol-Dependent Cytolysins
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it.
  • 1.4K
  • 09 Nov 2020
Topic Review
High-Density Lipoproteins as Homeostatic Nanoparticles
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)—cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling.
  • 1.4K
  • 30 Nov 2020
Topic Review
Human Coronavirus (HCoV)
Coronaviruses (CoVs) were identified in the 1930s as zoonotic spherical pathogens causing mostly respiratory or enteric diseases. Coronaviruses vary in size and are enveloped with club-shaped spikes on their surface. A helically symmetrical nucleocapsid comprising positive-sense single-stranded RNA is one of the largest virus genomes, ranging from 26 to 32 kilobases in length. Although CoVs are distributed mainly among mammals and birds, since 1960 seven species of human coronaviruses (HCoVs) have been described and some HCoVs infections (SARS-CoV, MERS-CoV and SARS-CoV-2) have resulted in lethal epidemics. The global range and high fatality rate of the newest HCoV pandemic has made SARS-CoV-2 the focus of the scientific world.
  • 1.4K
  • 17 Dec 2020
Topic Review
Immunoglobulins with Non-Canonical Functions
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The canonical and non-canonical functions of antibodies greatly enhances the functionality of the human immune system.
  • 1.4K
  • 05 Nov 2020
Topic Review
Hydroa Vacciniforme, EBV, and Lymphoma
Hydroa vacciniforme (HV) is a rare form of photosensitivity disorder in children or adolescence and is frequently associated with Epstein–Barr virus (EBV) infection, whereas HV-like lymphoproliferative disorders (HVLPD) describe a spectrum of EBV-associated T-cell or natural killer (NK)-cell lymphoproliferations with HV-like cutaneous manifestations, including EBV-positive HV, atypical HV, and HV-like lymphoma. 
  • 1.4K
  • 23 Dec 2020
Topic Review
TLR7 Implication in Various Clinical Diseases
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). 
  • 1.4K
  • 30 Jan 2023
Topic Review
Neutrophil Extracellular Trap-Driven Occlusive Diseases
The discovery of neutrophil extracellular trap (NET) formation as a part of the defense mechanisms of the innate immune system has provided new insights into the pathologies of various diseases. Nowadays, NET formation is considered a double-edged sword, as NET remnants induce inflammation and aggregated NETs (aggNETs) reportedly occlude tubular structures like vessels or ducts. In this regard, elucidating the mechanism of NET-dependent occlusions is crucial for the development of new therapeutic approaches.
  • 1.4K
  • 22 Apr 2022
Topic Review
Multiplex Tissue Imaging
Multiplex spatial analysis methods have recently been developed; these have offered insight into how cellular crosstalk dynamics and heterogeneity affect cancer prognoses and responses to treatment. Multiplex (imaging) technologies and computational analysis methods allow for the spatial visualization and quantification of cell–cell interactions and properties. These technological advances allow for the discovery of cellular interactions within the tumor microenvironment and provide detailed single-cell information on properties that define cellular behavior.
  • 1.4K
  • 08 Jul 2022
Topic Review
Hyper-Progressive Disease
Antibody-mediated disruption of the programmed cell death protein 1 (PD-1) pathway has brought much success to the fight against cancer. Nevertheless, a significant proportion of patients respond poorly to anti-PD-1 treatment. Cases of accelerated and more aggressive forms of cancer following therapy have also been reported. Termed hyper-progressive disease (HPD), this phenomenon often results in fatality, thus requires urgent attention. Among possible causes of HPD, regulatory T-cells (Tregs) are of suspect due to their high expression of PD-1, which modulates Treg activity. Tregs are a subset of CD4+ T-cells that play a non-redundant role in the prevention of autoimmunity and is functionally dependent on the X chromosome-linked transcription factor FoxP3. In cancer, CD4+FoxP3+ Tregs migrate to tumors to suppress anti-tumor immune responses, allowing cancer cells to persist.
  • 1.4K
  • 22 Apr 2022
Topic Review
Extracellular Hsp60, Hsp70 and Hsp90
The role of three members of the Chaperone Systems (CS)—heat shock protein (Hsp)60, Hsp70, and Hsp90—in Immune Systems (IS) modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS.
  • 1.4K
  • 13 Apr 2021
Topic Review
Antiviral Activity of Nitric Oxide
Nitric oxide (NO) is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2−), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. It is evident that NO exhibits substantial antiviral activity against many types of viruses, including SARS-CoV-2.
  • 1.4K
  • 28 Apr 2023
  • Page
  • of
  • 39
Academic Video Service