You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Pore-Based Sensing for Virus Particles Detection
Pore-based sensing is a highly sensitive sensing technology for the detection of extremely small particles such as molecules, proteins, and viruses (50–200 nm). Pore-based sensing is conducted by applying an electric field across nanopores, usually made of biomacromolecules, e.g., α-hemolysin or synthetic materials, e.g., graphene and semiconductor. When a particle passes through the pore, changes in the current waveform can be observed. The presence of specific waveform changes indicates the presence of target, and the number of this specific waveform can be used to determine the concentration.
  • 764
  • 12 Sep 2023
Topic Review
Functionalized Carbon-Based Electrochemical Sensors for Food/Alcoholic Beverage Safety
Food is a necessity in people’s lives. Equally importantly, alcoholic beverages are also highly demanded globally due to the indispensable role they play in cultural, social, and ritual events. However, the production of food and alcoholic beverages suffers from a variety of contaminants, such as toxins, pesticides, antibiotic residues, and heavy metals, which are seriously harmful to human beings. These urgent threats have raised the awareness of the need to improve product quality and safety via developing effective, rapid, and economical monitoring and detecting methods. Fortunately, due to their numerous advantages, including high sensitivity, short response time, low cost, and easy portability, electrochemistry sensors have made huge contributions to ensuring the quality of food and alcoholic beverages. 
  • 753
  • 21 Sep 2022
Topic Review
Nanomaterials
Nanomaterials can be employed to modify the biosensor’s surface to increase the surface area available for biorecognition events, thereby improving the sensitivity and detection limits of the biosensor. Various nanomaterials, such as carbon nanotubes, carbon nanofibers, quantum dots, metal nanoparticles, and graphene oxide nanoparticles, have been investigated for impedimetric biosensors.
  • 751
  • 10 Oct 2023
Topic Review Peer Reviewed
Graphene Nanocomposite Materials for Supercapacitor Electrodes
Graphene and related materials (graphene oxide, reduced graphene oxide) as a subclass of carbon materials and their composites have been examined in various functions as materials in supercapacitor electrodes. They have been suggested as active masses for electrodes in electrochemical double-layer capacitors, tested as conducting additives for redox-active materials showing only poor electronic conductivity, and their use as a coating of active materials for corrosion and dissolution protection has been suggested. They have also been examined as a corrosion-protection coating of metallic current collectors; paper-like materials prepared from them have been proposed as mechanical support and as a current collector of supercapacitor electrodes. This entry provides an overview with representative examples. It outlines advantages, challenges, and future directions.
  • 745
  • 27 Feb 2024
Topic Review
Protonic Ceramic Electrolysis Cells Design for NH3 Synthesis
The application of protonic ceramic electrolysis cells (PCECs) for ammonia (NH3) synthesis has been evaluated over the past 14 years. While nitrogen (N2) is the conventional fuel on the cathode side, various fuels such as methane (CH4), hydrogen (H2), and steam (H2O) have been investigated for the oxygen evolution reaction (OER) on the anode side. Because H2 is predominantly produced through CO2-emitting methane reforming, H2O has been the conventional carbon-free option thus far. Although the potential of utilizing H2O and N2 as fuels is considerable, studies exploring this specific combination remain limited. 
  • 741
  • 07 Mar 2024
Topic Review
Recent Progress in Electrocatalytic Reduction of CO2
A stable life support system in the spacecraft can greatly promote long-duration, far-distance, and multicrew manned space flight. Therefore, controlling the concentration of CO2 in the spacecraft is the main task in the regeneration system. The electrocatalytic CO2 reduction can effectively treat the CO2 generated by human metabolism. This technology has potential application value and good development prospect in the utilization of CO2 in the space station.
  • 737
  • 10 Apr 2023
Topic Review
WO3 Nanostructures for Energy Storage
Electrochemical energy storage devices are one of the main protagonists in the ongoing technological advances in the energy field, whereby the development of efficient, sustainable, and durable storage systems aroused a great interest in the scientific community. Batteries, electrical double layer capacitors (EDLC), and pseudocapacitors are characterized in depth in the literature as the most powerful energy storage devices for practical applications. Pseudocapacitors bridge the gap between batteries and EDLCs, thus supplying both high energy and power densities, and transition metal oxide (TMO)-based nanostructures are used for their realization. Among them, WO3 nanostructures inspired the scientific community, thanks to WO3’s excellent electrochemical stability, low cost, and abundance in nature. 
  • 724
  • 09 May 2023
Topic Review
Nano-Enzymes in Electrochemical Detection of Reactive Oxygen Species
Reactive oxygen species (ROS) play an important role in maintaining human health and are recognized as indicators of oxidative stress linked to various conditions such as neurodegenerative and cardiovascular diseases, as well as cancer. Consequently, detecting ROS levels in biological systems is crucial for biomedical and analytical research. Electrochemical approaches offer promising opportunities for ROS determination due to their exceptional sensitivity, speed, and simplicity of equipment. 
  • 718
  • 30 Aug 2023
Topic Review
Fiber Supercapacitors for Wearable Energy Storage
Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility.
  • 701
  • 25 Jun 2023
Topic Review
Aqueous Organic Redox-Targeting Flow Batteries
Aqueous organic redox flow batteries (AORFBs) represent innovative and sustainable systems featuring decoupled energy capacity and power density; storing energy within organic redox-active materials. This design facilitates straightforward scalability, holding the potential for an affordable energy storage solution.
  • 688
  • 12 Nov 2023
Topic Review
Transition Metal Dichalcogenides for Electrochemical Biomolecular Detection
Advances in the field of nanobiotechnology are largely due to discoveries in the field of materials. Recent developments in the field of electrochemical biosensors based on transition metal nanomaterials as transducer elements have been beneficial as they possess various functionalities that increase surface area and provide well-defined active sites to accommodate elements for rapid detection of biomolecules. In recent years, transition metal dichalcogenides (TMDs) have become the focus of interest in various applications due to their considerable physical, chemical, electronic, and optical properties. 
  • 680
  • 30 Nov 2023
Topic Review
Perovskites for CO2 Reduction
Due to their outstanding operational and compositional properties, perovskite-based structures have already been studied as an important class of solid-state components for electrochemical (EC), photoelectrochemical (PEC), and photovoltaic–electrochemical (PV-EC) CO2 reduction, showing great potential in their catalytic activity and device stability and with a promising window for further technological developments. 
  • 679
  • 29 Dec 2023
Topic Review
Electrochemical Glycan-Based Biosensors for Biomarker Detection
Electrochemical biosensing enables the detection of different analytes with high sensitivity; the equipment is simple, affordable, and amenable to miniaturization; and the electrode surface chemistry can adapt to specific applications. Electrochemical biosensors use several electroanalytical techniques, including voltammetric techniques—such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and amperometry—as well as potentiometric, conductometric, and spectroscopic techniques such as Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Capacitance Spectroscopy (ECS). Regarding analytical performance, EIS- and ECS-based glycan biosensors are highly sensitive compared with voltammetric and amperometric biosensors. Therefore, they are promising techniques for developing devices for detecting analytes at ultralow concentrations.
  • 674
  • 13 Dec 2022
Topic Review
Advancements in Electrospun Anode Materials
Electronic devices commonly use rechargeable Li-ion batteries due to their potency, manufacturing effectiveness, and affordability. Electrospinning technology offers nanofibers with improved mechanical strength, quick ion transport, and ease of production, which makes it an attractive alternative to traditional methods. The electrospinning technique can be used to generate nanofibers for battery separators, the electrodes with the advent of flame-resistant core-shell nanofibers.  The anode is the negative electrode of the electrochemical cell. There are three mechanisms of energy storage for the anode.
  • 654
  • 04 Apr 2023
Topic Review
Development Progress of Proton Exchange Membrane Fuel Cells
Proton exchange membrane fuel cells (PEMFCs) have the potential to tackle major challenges associated with fossil fuel-sourced energy consumption. Nafion, a perfluorosulfonic acid (PFSA) membrane that has high proton conductivity and good chemical stability, is a standard proton exchange membrane (PEM) used in PEMFCs. However, PEM degradation is one of the significant issues in the long-term operation of PEMFCs. Membrane degradation can lead to a decrease in the performance and the lifespan of PEMFCs. The membrane can degrade through chemical, mechanical, and thermal pathways.
  • 644
  • 07 Mar 2024
Topic Review
Print-Light-Synthesis of Electrodes
Print-Light-Synthesis combines ink-based digital printing of thin liquid metal precursor films with high intensity light irradiation for the synthesis of metal nanoparticles and metal films. The method is generally applied to produce two-dimensional patterns of metal nanoparticles by printing a thin liquid film containing one or more metal precursors onto a target substrate and immediately reducing the metal precursors to metal nanoparticles by light exposure of the as-deposited thin liquid film. The process must be adjusted in a way that (i) the precursor reduction is at least as fast as printing and (ii) the light intensity is sufficient for highly efficient photo-induced processes. Otherwise, incomplete metal precursor reduction will occur. The metal precursor inks do not contain any stabilizing agents that are generally added in alternative wet chemical methods for nanoparticle synthesis. Print-Light-Synthesis is designed in such a way that pure nanomaterials remain on the substrate, while all other ink components, such as the solvents and other dissolved species, generate gases or evaporate at moderate temperatures. The use of mask-less digital printing techniques provides a large flexibility in terms of pattern design, pattern modification, and process optimization. Inkjet printing provides a high control of the desired metal loading on the substrate, simply by adjusting the ink composition and printing parameters, such as number of droplets per substrate area. Films of separate nanoparticles, inter-connected nanoparticles and complex nanostructures can be prepared. Print-Light-Synthesis can be used to reduce or oxidise metal precursors, depending on the target oxidation state of the metal.
  • 616
  • 20 Jul 2023
Topic Review
Application of Electrochemical Food Monitoring for Food Additives
Lectrochemical sensors (ECSs) is a powerful method with great sensitivity and reliability for food evaluation. Metal-organic frameworks (MOFs) with surprisingly porous morphology provide uniform yet tunable features, a high specific surface, and established practical applications in various fields. MOF-based ECSs present novel routes for the fast and effective detection of food contaminants or nutrients. 
  • 608
  • 04 Jul 2023
Topic Review
Bismuth-Based Composites for Energy Storage Systems
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. 
  • 608
  • 17 Jan 2024
Topic Review
Electrocatalytic and Photoelectrocatalytic Sensors Based on Inorganic Materials
Electrochemical sensors present a wide range of interesting applications in the areas of environmental, industrial, and chemical analysis. The use of inorganic materials is interesting due to the fact of their abundance, low cost, and good electroactivity.
  • 585
  • 17 May 2023
Topic Review
Electrocatalytic Reactions for Converting CO2 to Value-Added Products
Carbon dioxide (CO2) emissions are an important environmental issue that causes greenhouse and climate change effects on the earth. Nowadays, CO2 has various conversion methods to be a potential carbon resource, such as photocatalytic, electrocatalytic, and photo-electrocatalytic. CO2 conversion into value-added products has many advantages, including facile control of the reaction rate by adjusting the applied voltage and minimal environmental pollution. The development of efficient electrocatalysts and improving their viability with appropriate reactor designs is essential for the commercialization of this environmentally friendly method.
  • 566
  • 28 Jun 2023
  • Page
  • of
  • 9
Academic Video Service