You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Enhanced Performance of Lithium-Ion Batteries
Lithium-ion batteries (LIBs) have been used in portable electric devices and electric vehicles (EVs) for years due to their high energy and power densities, satisfactory cycle life and the affordable materials and manufacturing costs. To meet the growing market demand for cheaper and more efficient energy storage technologies for EVs and power grids, higher energy storage density and efficiency, and a longer cycle life should be achieved in the next generation of LIBs. Silicon (Si) is considered as one of the most promising candidates for next generation negative electrode (negatrode) materials in LIBs due to its much higher theoretical specific charge capacity than the current commercial negatrode (carbon-based).
  • 938
  • 25 Apr 2022
Topic Review
Single Tungsten Atom Catalysts
Single-atom catalysts (SACs) are defined as single or isolated metal atoms with catalytic activity anchored on the support that forms a composite catalyst with catalytic activity, which is a forward direction in the field of heterogeneous catalysis.
  • 938
  • 10 Aug 2022
Topic Review
Towards the Commercialization of Solid Oxide Fuel Cells
The solid oxide fuel cell (SOFC) has become a promising energy conversion technology due to its high efficiency and low environmental impact. Though there are several reviews on SOFCs, comprehensive reports that simultaneously combine the latest developments in materials and integration strategies are very limited. This paper addresses those issues and discusses SOFCs working principles, design types, the fuels used, and the required features for electrodes and electrolytes.
  • 904
  • 21 Dec 2021
Topic Review
Resistive H2 Sensor Operating at Room Temperature
Lithium-ion batteries (LIBs) have become one of the most competitive energy storage technologies. However, the “thermal runaway” of LIBs leads to serious safety issues. Early safety warning of LIBs is a prerequisite for the widely applications of power battery and large-scale energy storage systems. As reported, hydrogen (H2) could be generated due to the reaction of lithium metal and polymers inside the battery. The generation of H2 is some time earlier than the “thermal runaway”. Therefore, the rapid detection of trace hydrogen is the most effective method for early safety warning of LIBs. Resistive hydrogen sensors have attracted attention in recent years. In addition, they could be placed inside the LIB package for the initial hydrogen detection.
  • 903
  • 10 Jul 2023
Topic Review
Analysis of Phenolic Compounds by Coulometric Array Detector
Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. 
  • 895
  • 07 Nov 2022
Topic Review
Enantioselective Catalytic Electrochemical Organic Transformations
Different approaches can be undertaken to realise a stereoselective electrochemical synthesis. Significant contributions to enantioselective electrochemical organic synthesis have been reported and largely reviewed in recent years. However, the development of general strategies for the electrochemical enantiocontrol of a transformation still presents considerable challenges; in particular, relatively few contributions of highly enantioselective catalytic electrochemical reactions have been reported.
  • 890
  • 12 Jun 2023
Topic Review
Electrochemical Microsensors for Ascorbic Acid Determination
Micro-sized sensors have become a hot topic in electroanalysis. Because of their excellent analytical features, microelectrodes are well-accepted tools for clinical, pharmaceutical, food safety, and environmental applications. Ascorbic acid is a naturally occurring water-soluble organic compound with antioxidant properties and its quantitative determination in biological fluids, foods, cosmetics, etc. using electrochemical microsensors is of wide interest. Various electrochemical techniques have been applied to detect ascorbic acid with extremely high sensitivity, selectivity, reproducibility and reliability, and apply to in vivo measurements.
  • 863
  • 04 Jan 2023
Topic Review
Solid-State Batteries
Batteries are essential in modern society as they can power a wide range of devices, from small household appliances to large-scale energy storage systems. Safety concerns with traditional lithium-ion batteries prompted the emergence of new battery technologies, among them solid-state batteries (SSBs), offering enhanced safety, energy density, and lifespan. Solid-state electrolytes used in SSBs include inorganic solid electrolytes, organic solid polymer electrolytes, and solid composite electrolytes. Inorganic options like lithium aluminum titanium phosphate excel in ionic conductivity and thermal stability but exhibit mechanical fragility. Organic alternatives such as polyethylene oxide and polyvinylidene fluoride offer flexibility but possess lower ionic conductivity. Solid composite electrolytes combine the advantages of inorganic and organic materials, enhancing mechanical strength and ionic conductivity. While significant advances have been made for composite electrolytes, challenges remain for synthesis intricacies and material stability. Nuanced selection of these electrolytes is crucial for advancing resilient and high-performance SSBs.
  • 850
  • 15 Jan 2024
Topic Review
Core-Shell Structure for Oxygen Reduction Reaction
With the deterioration of the ecological environment and the depletion of fossil energy, fuel cells, representing a new generation of clean energy, have received widespread attention. Noble metal-based core–shell catalysts for oxygen reduction reactions (ORRs) in proton exchange membrane fuel cells (PEMFCs). The novel testing methods, performance evaluation parameters and research methods of ORR were briefly introduced. The effects of the preparation method, temperature, kinds of doping elements and the number of shell layers on the ORR performances of noble metal-based core–shell catalysts were highlighted. The difficulties of mass production and the high cost of noble metal-based core–shell nanostructured ORR catalysts were also summarized. Thus, in order to promote the commercialization of noble metal-based core–shell catalysts, research directions and prospects on the further development of high performance ORR catalysts with simple synthesis and low cost are presented.
  • 837
  • 03 Aug 2022
Topic Review
Electrocatalysts for CO2 Reduction
Given the environmental problems caused by burning fossil fuels, it is believed that converting carbon dioxide (CO2) into chemical inputs is a great ally to generating clean energy. In this way, investigative studies related to electrochemical CO2 reduction (CO2RE) concerning the behavior of metal catalysts have received attention about the processes involved. CO2RE can be an important tool to mitigate the presence of this gas in the Earth’s atmosphere.
  • 830
  • 07 Feb 2024
Topic Review
Advanced Nanostructured Materials for Electrocatalysis in Lithium–Sulfur Batteries
Lithium–sulfur (Li-S) batteries are considered as among the most promising electrochemical energy storage devices due to their high theoretical energy density and low cost. However, the inherently complex electrochemical mechanism in Li-S batteries leads to problems such as slow internal reaction kinetics and a severe shuttle effect, which seriously affect the practical application of batteries. 
  • 829
  • 20 Feb 2023
Topic Review
Structural Supercapacitors
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000’s. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. 
  • 819
  • 12 Mar 2024
Topic Review
Nile Blue Sulphate
An efficient and reliable electrochemical sensing platform based on COOH-fMWCNTs modified GCE (COOH-fMWCNTs/GCE) was designed for the detection of nanomolar concentration of Nile Blue Sulphate (NBS). The photocatalytic degradation of NBS dye was carried out by using TiO2 nanoparticles as photocatalyst in the presence of H2O2. 
  • 815
  • 07 Mar 2023
Topic Review
Proposed Strategies for Higher Performance in Supercapacitors
The urgent need for efficient energy storage devices (supercapacitors and batteries) has attracted ample interest from scientists and researchers in developing materials with excellent electrochemical properties. Electrode material based on carbon, transition metal oxides, and conducting polymers (CPs) has been used. Among these materials, carbon has gained wide attention in Electrochemical double-layer capacitors (EDLC) due to its variable morphology of pores and structural properties as well as its remarkable electrical and mechanical properties. In this context, the present work summarizes the history of supercapacitors, the type of carbon electrode materials, and the different strategies to improve the performance of these devices. In addition, different approaches to studying the charging mechanism of these devices through different electrochemical techniques are presented, including advantages and challenges. Since a deeper understanding of the interfacial charge storage mechanisms is also crucial in the elaboration and performance of the electrode material.
  • 814
  • 12 Oct 2023
Topic Review
Separator Materials for Lithium Sulfur Battery
Lithium sulfur batteries (LSBs) have demonstrated to be a promising candidate battery to serve as the next-generation secondary battery, owing to its enhanced theoretical specific energy, economy, and environmental friendliness. Its inferior cyclability, however, which is primarily due to electrode deterioration caused by the lithium polysulfide shuttle effect, is still a major problem for the real industrial usage of LSBs. The optimization of the separator and functional barrier layer is an effective strategy for remedying these issues.
  • 813
  • 19 Dec 2023
Topic Review
In-Situ Polymerized Solid-State Polymer Electrolytes
The practical usage of sodium metal batteries is mainly hampered by their potential safety risks caused by conventional liquid-state electrolytes. Hence, solid-state sodium metal batteries, which employ inorganic solid electrolytes and/or solid-state polymer electrolytes, are considered an emerging technology for addressing the safety hazards. Unfortunately, these traditional inorganic/polymer solid electrolytes, most of which are prepared via ex-situ methods, frequently suffer from inadequate ionic conductivity and sluggish interfacial transportation. In light of this, in-situ polymerized solid-state polymer electrolytes are proposed to simplify their preparation process and simultaneously address these aforementioned challenges.
  • 791
  • 10 Nov 2023
Topic Review
Key Issues and Strategies of Aqueous Zinc-Ion Batteries
With the rapid growth of the world population and the further industrialization of modern society, the demand for energy continues to rise sharply. Hence, the development of alternative, renewable, and clean energy sources is urgently needed to address the impending energy crisis. Rechargeable aqueous zinc-ion batteries are drawing increased attention and are regarded as the most promising candidates for large-scale energy storage systems.
  • 790
  • 09 Nov 2023
Topic Review
Lithium Silicates in Anode Materials
The structural and interfacial stability of silicon-based and lithium metal anode materials is essential to their battery performance. Scientists are looking for a better inactive material to buffer strong volume change and suppress unwanted surface reactions of these anodes during cycling. Lithium silicates formed in situ during the formation cycle of silicon monoxide anode not only manage anode swelling but also avoid undesired interfacial interactions, contributing to the successful commercialization of silicon monoxide anode materials. Additionally, lithium silicates have been further utilized in the design of advanced silicon and lithium metal anodes, and the results have shown significant promise in the past few years.
  • 782
  • 26 Jan 2022
Topic Review
Tribocorrosion Behavior of Aluminum Alloys
Tribocorrosion is a material degradation process caused by the combined effect of wear and corrosion. The complexity of tribocorrosion lies in the fact that the chemical and mechanical attacks are not independent of each other but often act synergistically to cause accelerated failure.
  • 776
  • 26 Oct 2023
Topic Review
Methodology of Ice-Templated Method
The ice-templated method (ITM) has drawn significant attention to the improvement of the electrochemical properties of various materials. The ITM approach is relatively straightforward and can produce hierarchically porous structures that exhibit superior performance in mass transfer, and the unique morphology has been shown to significantly enhance electrochemical performance, making it a promising method for energy storage and conversion applications.
  • 768
  • 29 Aug 2023
  • Page
  • of
  • 9
Academic Video Service