Topic Review
Farming and Cultivation
We like to report on the concept of an advanced energy-engineering system for self-sustainable and rural areas farming and cultivation (RAFC). In this energy-engineering approach, we accounted for the effects of thin-film coated energy-saving features, in an optimized off-grid hybrid power generation system for advanced farm-house. Design and optimization of a hybrid (photovoltaic-battery-generator) power system have been performed by using the Hybrid Optimization of Multiple Energy Resources (HOMER Pro _ Version 3.14.0) software, developed by National Renewable Energy Limited (NREL, Boulder, CO 80301, USA). Optimized results show that the off-grid hybrid system together with the additional Low-E type coating assisted energy-saving features is more feasible for next-generation modern cultivation and farming with long-term sustainability. 
  • 824
  • 26 Oct 2020
Topic Review
Thermochromic Polymeric Films
Polymers as smart temperature sensors
  • 824
  • 12 Nov 2021
Topic Review
Nanocrystalline Doped Diamond for Photocatalytic
Nitrogen impurity has been introduced in diamond film to produce a nitrogen vacancy center (NV center) toward the solvated electron-initiated reduction of N2 to NH3 in liquids, giving rise to extend the wavelength region beyond the diamond’s band. Scanning electron microscopy and X-ray diffraction demonstrate the formation of the nanocrystalline nitrogen-doped diamond with an average diameter of ten nanometers. Raman spectroscopy and PhotoLuminescence (PL) spectrum show characteristics of the NV0 and NV− charge states. Measurements of photocatalytic activity using supraband (λ < 225 nm) gap and sub-band gap (λ > 225 nm) excitation show the nitrogen-doped diamond significantly enhanced the ability to reduce N2 to NH3 compared to the polycrystalline diamond and single crystal diamond (SCD). Our results suggest an important process of internal photoemission, in which electrons are excited from negative charge states into conduction band edges, presenting remarkable photoinitiated electrons under ultraviolet and visible light. Other factors, including transitions between defect levels and processes of reaction, are also discussed. This approach can be especially advantageous to such as N2 and CO2 that bind only weakly to most surfaces and high energy conditions.
  • 821
  • 16 Oct 2020
Topic Review
Processing Technologies for Thin Kesterite CZTS Absorber Films
Solar cells based on Cu(In, Ga)(S, Se)2 (CIGS) and CdTe thin-film solar cells have already reached the commercial stage, having an efficiency of 23.4% for CIGS and 21.0% for CdTe. However, their marketability has stagnated. A promising solution for a non-toxic and commercially attractive absorber for photovoltaic applications is offered by the family of kesterite semiconductor materials such as copper–zinc–tin–sulfide (with the chemical formula Cu2ZnSnS4) (CZTS) and copper–zinc–tin–selenide (with the chemical formula Cu2ZnSnSe4)(CZTSe) and their alloy family copper–zinc–tin–sulfo–selenide (Cu2ZnSn(Sx,Se1−x)4 (CZTSSe), where 0 ≤ x ≤ 1).
  • 820
  • 02 Dec 2022
Topic Review
Anti-Oxidation Coating on Niobium Alloy
Niobium (Nb)-based alloys have been extensively used in the aerospace field owing to their excellent high-temperature mechanical properties. However, the inferior oxidation resistance severely limits the application of Nb-based alloys in a high-temperature, oxygen-enriched environment. Related scholars have extensively studied the oxidation protection of niobium alloy and pointed out that surface coating technology is ideal for solving this problem.
  • 799
  • 23 Nov 2021
Topic Review
Nanocrystalline Layer
It was demonstrated that the mechanical shot peening (MSP) technique was a viable way to obtain a nanocrystalline layer on a large size pure titanium plate due to the MSP provided for severe plastic deformation (SPD) of surface high velocity balls impacting. The MSP effects of various durations in producing the surface nanocrystalline layer was characterized by optical microscope (OM), X-ray diffraction (XRD), transmission electron microscope (TEM), and Vickers micro-hardness tester. The results showed that the thickness of the SPD layer gradually increased with the MSP processing time increase, but saturated at 230 μm after 30 min. The average grain size was refined to about 18.48 nm in the nanocrystalline layer. There was equiaxed grain morphology with random crystallographic orientation in the topmost surface. By comparing with the nanocrystalline layer, acquired by surface mechanical attrition treatment (SMAT), the microstructure and properties of the nanocrystalline layer acquired by MSP was evidently superior to that of the SMAT, but the production time was cut to about a quarter of the time used for the SMAT method.
  • 795
  • 15 May 2021
Topic Review
Deposition Parameters on the Microstructure of Multilayer Films
Multilayer films with high-density layer interfaces have been studied widely because of the unique mechanical and functional properties. Magnetron sputtering is widely chosen to fabricate multilayer films because of the convenience in controlling the microstructure. 
  • 788
  • 28 Dec 2021
Topic Review
Surface Activation of Polytetrafluoroethylene
Fluorinated polymers are renowned for their chemical inertness and thus poor wettability and adhesion of various coatings. Apart from chemical methods employing somewhat toxic primers, gaseous plasma treatment is a popular method for the modification of surface properties. Different authors have used different plasmas, and the resultant surface finish spans between super-hydrophobic and super-hydrophilic character.
  • 784
  • 19 Oct 2020
Topic Review
Deposition Characteristics of Catenary Insulator
An electrified railway catenary is a special high-voltage transmission line installed above rails and transmits electric energy to electric locomotives or motor train units by making contact with pantographs. Catenary insulators are insulation equipment of traction power supply systems that mainly serve as mechanical support and electrical insulation. 
  • 783
  • 27 Oct 2020
Topic Review
Non-Intumescent Flame-Retardant Coating
Fire-retardant coatings, common materials for fire protection of buildings, are widely used in the construction industry. Because they do not change the nature of the matrix, while greatly improving the ability of the matrix to resist flame propagation, they significantly reduce the fire hazard of buildings. Flame-retardant coatings are divided into NIFRC and IFRC , depending on whether the flame-retardant coating expands when heated. NIFRCs are generally composed of inorganic materials that can prevent the return of the heat and oxygen supply to the combustible matrix during the heating process of the polymer and, at the same time, prevent the transfer of combustible gas generated by the pyrolysis of the matrix to the flame, thus protecting the polymer matrix. According to the literature reports, NIFRCs for RPUF mainly include hydrogel/sol, aerogel, ceramic materials, etc.
  • 779
  • 19 Apr 2023
Topic Review
Plasma Electrolytic Oxidation Coating
Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on metals and their alloys. Although inorganic electrolytes are widely used in PEO, the organic additives have received considerable interest in the last decade due to their roles in improving the final voltage and controlling spark discharging, which lead to significant improvements in the performance of the obtained coatings. 
  • 775
  • 30 Mar 2021
Topic Review
Tin-Based Perovskite Solar Cells, Dopants
Tin-based perovskite solar cells exist in p-i-n or n-i-p configurations alternating the position of the electron transport (n) and hole transport layer (p). Therefore, during fabrication of these layered devices, it is very common to encounter energy level mismatches and defects at the interface. The simplest trick to improve the performance of tin-based perovskite solar cells is to add an interfacial layer to minimise the energy mismatch and defects at interfaces.
  • 768
  • 24 Sep 2021
Topic Review
Sensing ability of ferroelectric oxide nanowires grown in nanopores
Nanowires of ferroelectric potassium niobate were grown by filling nanoporous templates of both sides opened anodic aluminum oxide (AAO) through radiofrequency vacuum sputtering for multisensor fabrication. The precise geometrical ordering of the AAO matrix led to a well-defined single-axis oriented wire-shaped material inside the pores. The sensing abilities of the samples were studied and analyzed in terms of piezoelectric and pyroelectric response and the results were compared for different lengths of the nanopores (nanotubes)—1.3 µm, 6.3 µm, and 10 µm. Based on scanning electron microscopy, elemental and microstructural analyses, as well as electrical measurements at bending and heating, the overall sensing performance of the devices was estimated. It was found that the produced membrane-type elements, consisting of potassium niobate grown in AAO template exhibited excellent piezoelectric response due to the increased specific area as compared to non-structured films, and could be further enhanced with the length of the nanowires. The piezoelectric voltage increased linearly with 16 mV per micrometer of nanowire’s length. At the same time, the pyroelectric voltage was found to be less sensitive to the length of the nanowires, changing its value at 400 nV/µm. This paper provides a simple and low-cost approach for nanostructuring ferroelectric oxides with multi-sensing application and serves as a base for further optimization of template-based nanostructured devices.
  • 764
  • 29 Oct 2020
Topic Review
Carbon-Based Conductive Inks
Researchers prepared composite conductive inks with high conductivity, high thermal conductivity, strong stability, and excellent comprehensive mechanical properties by combining carbon-based materials such as graphene and carbon nanotubes with metal-based materials. Through new electronic printing technologies, conductive inks can be used not only to promote the development of integrated circuits but also in various new electronic products. 
  • 760
  • 27 Oct 2023
Topic Review
Surface modification of dental implants
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants.
  • 756
  • 20 Nov 2020
Topic Review
Methods of Making Lithium-Ion Batteries Membrane
Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have gained widespread attention as an energy storage solution. With the global demand for clean and sustainable energy, the social, economic, and environmental significance of LIBs is becoming more widely recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous membrane material, warrants significant research attention. 
  • 748
  • 22 Sep 2023
Topic Review
Nucleation of Diamond
Nucleation is a key process for the growth of diamond films. Spontaneously nucleation on heterogeneous substrates is difficult. This is mainly because the high surface energy of diamond. Rapid nucleation (a few minutes commonly) is a necessary condition for the deposition of high-quality diamond films. The characteristics of the substrate, such as surface defects, surface energy, surface diffusion and bulk diffusion of atoms, and chemical reactivity, affect the diamond nucleation process. Especially, a gallium nitride (GaN) substrate, which has a large lattice mismatch and thermal expansion mismatch with diamond, puts forward some difficult requirements for diamond nucleation. The temperature of the substrate also affects the diamond nucleation process. Considering the quality and rate of diamond nucleation and the thermal stability of GaN high electron mobility transistors (HEMTs), researchers regard ~600 °C as a more suitable nucleation temperature. 
  • 748
  • 03 Apr 2023
Topic Review
Printing Methods to Fabricate Receptor Layers of Gas Sensors
Printing technologies are nowadays an integral element of contemporary materials science applied to development of low-cost gas sensors and multisensor arrays for many applications including a development of lab-on- chips. These protocols ensure automating of technological processes, a reproducibility of microstructural and functional characteristics with a reduced time necessary for the receptor material deposition over substrates. At the same time, using an accurate positioning system improves significantly the targeting of the substance, while the dosing setups allow to ensure a high control over the volume of discretely or continuously applied inks. The printing technologies enable forming planar receptor structures, even under a complex geometry, at various thicknesses and porosity with the required spatial resolution to be in nanometer micrometer ranges. Some methods, as dip-pen nanolithography, nano-imprinting lithography, and microcontact printing, are more suitable for discrete miniature devices with unique characteristics owing to the labor-intensive and multi-step procedures, while other ones, as ink-jet printing, aerosol jet printing or microextrusion printing, can be used quite easily in scaling the procedures to design gas sensors, including a rapid tuning of their geometric parameters without a necessity to prepare appropriate stencils and masks in advance. While designing the gas-sensor receptor materials, a great variety of printing technologies are used these days which vary both in the principle of operation and in such parameters as printing speed, spatial resolution, thickness of the formed coatings, and their microstructure, etc.
  • 744
  • 23 May 2022
Topic Review
Chemical Wood Surface Improvements
Increasing the use of wood in buildings is regarded by many as a key solution to tackle climate change. For this reason, a lot of research is carried out to develop new and innovative wood surface improvements and make wood more appealing through features such as increased durability, fire-retardancy, superhydrophobicity, and self-healing.
  • 740
  • 21 Dec 2021
Topic Review
UV-A Photocatalysis in Livestock and Poultry Farming
As the scale of the livestock industry has grown with the increase in the demand for livestock and poultry products, gaseous emissions, an unwanted side effect of livestock and poultry production, are also increasing. Various mitigation technologies have been developed to reduce such air pollution, and the mitigation technologies are divided mainly into “source-based type” (meant to fundamentally reduce the emissions) and “end-of-pipe type” (physicochemical and biological treatment of the output from barns to reduce the release into the environment). Ultraviolet light (UV) can be considered as both end-of-pipe (treating exhaust air from barns) and source-based type (treating air inside the barn).
  • 736
  • 20 Sep 2022
  • Page
  • of
  • 12
ScholarVision Creations