You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Mitochondria in Exercise-Induced Neuroprotection
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer’s disease, or the most common neurodegenerative motor disorder, Parkinson’s disease. 
  • 1.3K
  • 25 Jun 2021
Topic Review
The PD-1/PD-L1 Pathway
Binding of the immune checkpoint programmed cell death protein 1 (PD-1) to its ligand programmed death-ligand 1 (PD-L1) downregulates the adaptive immune response. PD-L1 is regularly expressed by antigen presenting cells. During an acute immune response, effector T cells transiently upregulate PD-1. In contrast, chronic immune stimulation leads to continuous expression of PD-1 on effector T cells. The latter also occurs in the tumor microenvironment, where PD-L1 can be expressed by tumor cells. The PD-1/PD-L1 pathway is an excellent example for the clinical application of biomarker research in the context of comparative immuno-oncology. Initial comparator studies on this pathway were mainly conducted on cells and tissues derived from mice and humans. This resulted in the discovery of anti PD-1 or anti-PD-L1 immune checkpoint therapy that is widely applied for the treatment of human cancers. The use of monoclonal antibodies directed against PD-1 or PD-L1 as therapeutic agents restores the anti-cancer immune response. In recent years, investigations on these molecules have been extended to canine cancers and confirm the expression of PD-1 and PD-L1 in several canine tumors. Whether immune checkpoint therapy may be a possible treatment option for those canine cancers remains to be revealed in future clinical trials.
  • 1.3K
  • 02 Dec 2022
Topic Review
Individual Exercise during Home-based Rehabilitation
Over the last decade, many regular physical activity studies with large prospective cohorts have been conducted. Taken together, more than a million subjects have been included in these exercise studies. The risk of morbidity and mortality has been reduced by 30% to 40% as a result of exercise. These risk reductions hold true for many diseases, as well as for prevention and rehabilitation. Physical activity has also been in the treatment of many diseases, such as cardiopulmonary, metabolic or neurologic/psychiatric diseases, all with positive results.
  • 1.3K
  • 28 Sep 2021
Topic Review
VEGF Alters Photoreceptor Function
Vascular endothelial growth factor (VEGF) is a major therapeutic target for blood–retina barrier (BRB) breakdown in diabetic retinopathy (DR), age-related macular degeneration (AMD), and other hypoxic retinal vascular disorders. VEGF is a direct functional regulator of photoreceptors and VEGF up-regulation in DR is a contributing factor to diabetes-induced alteration of photoreceptor function. This information is critical to the understanding of the therapeutic effect and to the care of anti-VEGF drug-treated patients for BRB breakdown in DR, AMD, and other hypoxic retinal vascular disorders. 
  • 1.3K
  • 22 Sep 2021
Topic Review
REM Sleep, Sleep Fuctions and Sleep Quality
The correct phase relationship of the sleep period with the circadian pacemaker is an important factor to guarantee adequate restorative sleep duration and sleep continuity, thus providing the necessary background for a good night’s sleep. Due to the fact that REM sleep is controlled by the circadian clock, it can provide a window-like mechanism that defines the termination of the sleep period when there is still the necessity to complete the sleep processes  and to meet the circadian end of sleep timing. An adequate amount of REM sleep appears necessary to guarantee sleep continuity, while periodically activating the brain and preparing it for the return to consciousness.
  • 1.3K
  • 23 Dec 2021
Topic Review
Physiology and Pathology of Salivary Glands
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. Understanding the cellular and molecular control of salivary glands function is highly relevant for therapeutic purposes. Three major salivary glands account for more than 90% of salivary secretion: the parotid gland (PG) is mainly composed of serous acini-secreting α-amylase-rich saliva; the sublingual gland (SL) secretes mucous, a viscous solution rich in mucins; the submandibular gland (SMG) is composed by a mixed population of acini with a mucous and serous function. 
  • 1.3K
  • 07 Feb 2022
Topic Review
Sex, Asthma and Exercise
Exercise-induced bronchoconstriction (EIB) is a common complication of athletes and individuals who exercise regularly. It is estimated that about 90% of patients with underlying asthma (a sexually dimorphic disease) experience EIB; however, sex differences in EIB have not been studied extensively. With the goal of better understanding the prevalence of EIB in males and females, and because atopy has been reported to occur at higher rates in athletes, in this study, we investigated sex differences in EIB and atopy in athletes. A systematic literature review identified 60 studies evaluating EIB and/or atopy in post-pubertal adult athletes (n = 7501). Collectively, these studies reported: (1) a 23% prevalence of EIB in athletes; (2) a higher prevalence of atopy in male vs. female athletes; (3) a higher prevalence of atopy in athletes with EIB; (4) a significantly higher rate of atopic EIB in male vs. female athletes. Our analysis indicates that the physiological changes that occur during exercise may differentially affect male and female athletes, and suggest an interaction between male sex, exercise, and atopic status in the course of EIB. Understanding these sex differences is important to provide personalized management plans to athletes with underlying asthma and/or atopy.
  • 1.3K
  • 30 Sep 2021
Topic Review
Nrf2 in Neurogenesis and Disease Development
Neurogenesis occurs in the brain during embryonic development and throughout adulthood. Neurogenesis occurs in the hippocampus and under normal conditions and persists in two regions of the brain—the subgranular zone (SGZ) in the dentate gyrus of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of metabolism, protein quality control, and antioxidative defense, and is linked to neurogenesis. 
  • 1.3K
  • 13 Jul 2022
Topic Review
Vitamin D, microbiome, and IBD
Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract (GIT), including Crohn’s disease (CD) and ulcerative colitis (UC), which differ in the location and lesion extensions. Both diseases are associated with microbiota dysbiosis, with a reduced population of butyrate-producing species, abnormal inflammatory response, and micronutrient deficiency (e.g., vitamin D hypovitaminosis). Vitamin D (VitD) is involved in immune cell differentiation, gut microbiota modulation, gene transcription, and barrier integrity. Vitamin D receptor (VDR) regulates the biological actions of the active VitD (1α,25-dihydroxyvitamin D3), and is involved in the genetic, environmental, immune, and microbial aspects of IBD. VitD deficiency is correlated with disease activity and its administration targeting a concentration of 30 ng/mL may have the potential to reduce disease activity. Moreover, VDR regulates functions of T cells and Paneth cells and modulates release of antimicrobial peptides in gut microbiota-host interactions. Meanwhile, beneficial microbial metabolites, e.g., butyrate, upregulate the VDR signaling.
  • 1.3K
  • 31 Jan 2021
Topic Review
Nociceptive TRP Channel
Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli. The ability of nociceptors to behave as noxious stimuli detectors relies on the presence of specialized transducing molecules at their peripheral nerve terminals capable of transforming the harmful physical (thermal and mechanical) and chemical stimuli into generator potentials. Upon nerve terminal stimulation, the output signal conveying to the central nervous system depends on the properties of transducer channels which produce generator potentials. Voltage-gated channels subsequently translate it into action potential firing. Nociceptive TRP channels are among the most studied transducer channels expressed in nociceptors and play a pivotal role in the study of pain.
  • 1.3K
  • 09 Feb 2021
Topic Review
The Relationship between Iron and Inflammatory Bowel Diseases
Inflammatory Bowel Diseases, including ulcerative colitis (UC) and Crohn’s disease (CD), are chronic, relapsing inflammatory conditions of the gastrointestinal (GI) tract. Interactions between the environmental factors and commensal intestinal microflora in genetically predisposed individuals are considered the leading cause of an inappropriate immune response and as a result, the development of inflammatory disease. Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events.
  • 1.3K
  • 15 Sep 2022
Topic Review
Long-Term Potentiation Mechanisms of Excitatory and Inhibitory Synapses
Neuronal and glial cells are the main components of the brain. Approximately 50% of the brain is neuronal cells; the other half is glial cells, which all play an important role in the mammalian brain. Billions of neurons are connected and communicate via synapses inextricably linked to behavior, memory, and neurological diseases. Synaptic plasticity is a change in neural connection strength that occurs in response to activity. Reorganization of the structural and functional connections of synapses occurs in response to internal or external stimuli, leading to the strengthening or weakening of synaptic connections via synaptic plasticity. Long-term potentiation (LTP) has been widely used as an ideal model for studying synaptic plasticity, learning, and memory.
  • 1.3K
  • 19 Apr 2023
Topic Review
Smartwatches and Heart Rate Variability in Stress Management
In the modern world, stress has become a pervasive concern that affects individuals’ physical and mental well-being. To address this issue, many wearable devices have emerged as potential tools for stress detection and management by measuring heart rate, heart rate variability (HRV), and various metrics related to it. 
  • 1.3K
  • 28 Sep 2023
Topic Review
Lipidomics in Human Brain
One of the richest tissues in lipid content and diversity of the human body is the brain. Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. 
  • 1.3K
  • 28 May 2023
Topic Review
Primary Cilia: Sensory Hubs for Nitric Oxide Signaling
Primary cilia are sensory organelles present on the surface of most polarized cells. Primary cilia have been demonstrated to play many sensory cell roles, including mechanosensory and chemosensory cell functions. It is known that the primary cilia of vascular endothelial cells will bend in response to fluid shear stress, which leads to the biochemical production and release of nitric oxide, and this process is impaired in endothelial cells that lack primary cilia function or structure. In this entry, we will provide an overview of ciliogenesis and the differences between primary cilia and multicilia, as well as an overview of our published work on primary cilia and nitric oxide, and a brief perspective on their implications in health and disease.
  • 1.3K
  • 04 Aug 2022
Topic Review
TRPV1 Channel
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is a crucial transducer and molecular Integrator of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology.
  • 1.3K
  • 17 Dec 2020
Topic Review
Cerebrovascular Permeability during Neuroinflammatory Diseases
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Alterations in neurons and glial cells affect the function of neurons. However, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer’s disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration leading to memory decline, changes in cerebrovascular permeability resulting in accumulation of blood plasma proteins and particularly of fibrinogen in extravascular space of the brain seem to cause the most devastating effects.
  • 1.3K
  • 14 Apr 2023
Topic Review
Junctophilin1 and Junctophilin2 in Assembly of Sarcoplasmic Reticulum
Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. 
  • 1.3K
  • 01 Mar 2022
Topic Review
Dental Stem Cells
Stem cells of the teeth can contribute to the regeneration of non-dental organs, namely mammary glands. According to a new study from researchers at the University of Zurich, dental epithelial stem cells from mice can generate mammary ducts and even milk-producing cells when transplanted into mammary glands. This could be used for post-surgery tissue regeneration in breast cancer patients. The ability of adult stem cells to generate various tissue-specific cell populations is of great interest in the medical and dental research fields. These cells can replace damaged cells and therefore represent a good alternative to classical medical treatments for tissue regeneration. This may even allow the de novo formation entire tissues and organs in the future.
  • 1.3K
  • 29 Oct 2020
Topic Review
Pharmacology of CQ/HCQ and COVID-19
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been proposed as treatments for COVID-19. These drugs have been studied for many decades, primarily in the context of their use as antimalarials, where they induce oxidative stress-killing of the malarial parasite. Less appreciated, however, is evidence showing that CQ/HCQ causes systemic oxidative stress. In vitro and observational data suggest that CQ/HCQ can be repurposed as potential antiviral medications.
  • 1.3K
  • 01 Nov 2020
  • Page
  • of
  • 16
Academic Video Service