Topic Review
Artificial Solid Electrolyte Interface in Anode Materials
Due to the ever-growing importance of rechargeable lithium-ion batteries, the development of electrode materials and their processing techniques remains a hot topic in academia and industry. Even the well-developed and widely utilized active materials present issues, such as surface reactivity, irreversible capacity in the first cycle, and ageing. Thus, there have been many efforts to modify and coat the surface of active materials to enhance the electrochemical performance of the resulting electrodes and cells. This type of coating stands out because of the possibility of acting as an artificial solid electrolyte interphase (A-SEI), serving as an anode protective layer. 
  • 701
  • 02 Dec 2022
Topic Review
Electrochemical Bromofunctionalization of Alkenes
The electrochemical generation of highly reactive and hazardous bromine under controlled conditions as well as the reduction of surplus oxidizers and reagent waste has placed electrochemical synthesis in a highlighted position. In particular, the electrochemical dibromination and bromofunctionalization of alkenes and alkynes have received significant attention, as the forming of synthetically important derivatives can be generated from bench-stable and safe bromide sources under “green” conditions.
  • 697
  • 17 Nov 2022
Topic Review
Polymer Electrolytes
Lithium-based electrolytes are, at least from a thermodynamic standpoint, the most suitable ion-transport materials for energy storage systems. However, lithium-based ionic conductors suffer from safety concerns, and the limited availability of lithium in the Earth’s crust is at the root of the need to consider alternative metal ions. Notably, sodium stands out as the sixth most-prevalent element; therefore, when considering mineral reserves, it as a very attractive candidate as an alternative to the status quo. Even if the specific energy and energy density of sodium are indeed inferior with respect to those of lithium, there is substantial economic appeal in promoting the use of the former metal in stationary energy storage applications. 
  • 692
  • 12 Mar 2024
Topic Review
MS Combined with EAOPs
Membrane separation (MS) and electrochemical advanced oxidation process (EAOPs) are the important technologies in water pollution control. They can not only effectively remove pollutants in water, but also have the advantages of environmental friendliness, easy automation and low land occupation. However, both MS and EAOPs still have some problems to overcome, namely membrane fouling and high energy consumption. In recent years, many researchers proposed that the combination of the two technologies can overcome this problem. In this case, both of them can be used as a pretreatment for the other to achieve different purposes. When MS is prior to EAOPs, the purpose is to reduce the turbidity as well as to concentrate pollutants and salinity in order to weaken the mass transfer limitation and increase the conductivity. When setting MS after EAOPs, the purpose is to treat the concentrate to meet the discharge standard or permeate water to further improve the quality for reuse. The combination of MS and EAOPs offers a valuable way to implement them in the practical project of wastewater treatment which deserves more attention.
  • 684
  • 20 Nov 2020
Topic Review
Pharmaceuticals Removal from Water
Pharmaceuticals (PhCs) hold a special place since their presence even at low concentrations can cause irreversible damage to the ecosystem and human health. PhCs can be divided into various categories concerning their characteristics such as anti-inflammatory (e.g., diclofenac), antiepileptic (e.g., carbamazepine), stimulant (e.g., caffeine), β-blockers (e.g., propranolol), antibiotics (sulfamethoxazole), psychiatric (e.g., venlafaxine), antimicrobials (e.g., triclosan), etc.
  • 678
  • 10 Sep 2021
Topic Review
Photoelectrochemical Cells
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy.
  • 677
  • 03 Nov 2023
Topic Review
Graphene-Based Nanomaterials for Lithium-Sulfur Batteries
The global energy crisis and environmental problems are becoming increasingly serious. It is now urgent to vigorously develop an efficient energy storage system. Lithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to their high energy density. Sulfur is abundant on Earth, low-cost, and environmentally friendly, which is consistent with the characteristics of new clean energy. Although LSBs possess numerous advantages, they still suffer from numerous problems such as the dissolution and diffusion of sulfur intermediate products during the discharge process, the expansion of the electrode volume, and so on, which severely limit their further development. Graphene is a two-dimensional crystal material with a single atomic layer thickness and honeycomb bonding structure formed by sp2 hybridization of carbon atoms. Since its discovery in 2004, graphene has attracted worldwide attention due to its excellent physical and chemical properties. 
  • 662
  • 29 Apr 2021
Topic Review
Biochar in the Development of Electrochemical Printed Platforms
Biochar is a pyrolytic material with several environmental benefits such as reducing greenhouse gas emissions, sequestering atmospheric carbon and contrasting global warming. It has moved to the forefront for its conductivity and electron transfer properties, finding applications in the fabrication of electrochemical platforms. In this field, researchers have focused on low-cost biomass capable of replacing more popular and expensive carbonaceous nanomaterials (i.e., graphene, nanotubes and quantum dots) in the realization of sensitive cost-effectiveness and eco-friendly electrochemical tools. 
  • 655
  • 14 Sep 2022
Topic Review
Sodium-Vanadium Bronze Na9V14O35
Na9V14O35 (η-NaxV2O5) has been synthesized by a solid-state route in an evacuated sealed silica tube and tested as electroactive material for Na half-cells. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula unit, resulting in a charge capacity of about 60 mAh g−1. Upon discharge below 1 V, Na9V14O35 uptakes Na up to the Na:V = 1:1 atomic ratio that is accompanied by a drastic increase of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids, and a volume increase of about 31%. The induced structure instability triggers a transformation of the ordered layered Na9V14O35 structure into a rock-salt type disordered structure. Ultimately, the amorphous products of a conversion reaction are formed at 0.1 V, delivering the discharge capacity up to 490 mAh g−1, which, however, quickly fades with the number of charge-discharge cycles.
  • 654
  • 11 Jan 2022
Topic Review
Application of Nanomaterial Modified Aptamer-Based Electrochemical Sensor
The electrochemical aptamer sensor (E-apt sensor), which is composed of biometric elements and signal sensors, has attracted more and more attention for this purpose. The signal sensor usually consists of an electrode substrate, modified layer, and electrochemical signal detection system. The most widely used electrode substrates include a gold electrode (AuE), glassy carbon electrode (GCE), indium tin oxide electrode (ITO), reduced graphene electrode (ERGO), and screen-printed electrode (SPE). Nanomaterials are particularly important in the construction of E-apt sensors, which can be used as aptamer carriers or sensitizers to stimulate or inhibit electrochemical signals.
  • 649
  • 31 May 2022
Topic Review
Wearable Sensors for Wound Infection Biomarkers Detection
Infection represents a major complication that can affect wound healing in any type of wound, especially in chronic ones. There are currently certain limitations to the methods that are used for establishing a clinical diagnosis of wound infection. Thus, new, rapid and easy-to-use strategies for wound infection diagnosis need to be developed. To this aim, wearable sensors for infection diagnosis have been recently developed. These sensors are incorporated into the wound dressings that are used to treat and protect the wound, and are able to detect certain biomarkers that can be correlated with the presence of wound infection. Among these biomarkers, the most commonly used ones are pH and uric acid, but a plethora of others (lactic acid, oxygenation, inflammatory mediators, bacteria metabolites or bacteria) have also been detected using wearable sensors.
  • 638
  • 10 Jan 2022
Topic Review
Thermo-Electrochemical Cells for Harvesting Waste Heat
Thermo-electrochemical cells (also known as thermocells; TECs) represent a promising technology for harvesting and exploiting low grade waste heat (< 100-150ºC) ubiquitous in the modern environment. Based on temperature dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy generating power at low costs, minimal material consumption and negligible carbon foot-print. Highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. For waste heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field.
  • 627
  • 05 Sep 2022
Topic Review
Enhanced Performance of Lithium-Ion Batteries
Lithium-ion batteries (LIBs) have been used in portable electric devices and electric vehicles (EVs) for years due to their high energy and power densities, satisfactory cycle life and the affordable materials and manufacturing costs. To meet the growing market demand for cheaper and more efficient energy storage technologies for EVs and power grids, higher energy storage density and efficiency, and a longer cycle life should be achieved in the next generation of LIBs. Silicon (Si) is considered as one of the most promising candidates for next generation negative electrode (negatrode) materials in LIBs due to its much higher theoretical specific charge capacity than the current commercial negatrode (carbon-based).
  • 619
  • 25 Apr 2022
Topic Review
Halogen Hybrid Flow Batteries
Among the most effective energy systems for stationary applications, a special place is occupied by redox flow battery (RFB) technology, encompassing easy scalability with independent scaling of power density and energy capacity, no detrimental effects of a deep discharge, very low self-discharge, low cost for a large system compared to other types of batteries, and long cycle life.
  • 612
  • 31 Oct 2022
Topic Review
TMDs in Aqueous Zinc Ion Batteries
Owing to the unique layered structure and more desirable layer spacing, transition metal dichalcogenide (TMD) materials are considered as the comparatively ideal cathode material of ZIBs which facilitate the intercalation/ deintercalation of hydrated Zn2+ between layers.
  • 607
  • 19 Apr 2022
Topic Review
Ion-Selective Electrodes Sensitive to Nitrates Ions
Ion-selective electrodes are a popular analytical tool useful in the analysis of cations and anions in environmental, industrial and clinical samples. 
  • 602
  • 07 Oct 2023
Topic Review
Single Tungsten Atom Catalysts
Single-atom catalysts (SACs) are defined as single or isolated metal atoms with catalytic activity anchored on the support that forms a composite catalyst with catalytic activity, which is a forward direction in the field of heterogeneous catalysis.
  • 597
  • 10 Aug 2022
Topic Review
Nanocarbon-Iridium Oxide Nanostructured Hybrids
Nanostructuring nanocarbons with IrOx yields to material coatings with large charge capacities for neural electrostimulation, and large reproducibility in time, that carbons do not exhibit.
  • 596
  • 21 Jul 2021
Topic Review
Cathode Materials of Sodium-Ion Batteries
Emerging energy storage systems have received significant attention along with the development of renewable energy, thereby creating a green energy platform for humans. Lithium-ion batteries (LIBs) are commonly used, such as in smartphones, tablets, earphones, and electric vehicles. However, lithium has certain limitations including safety, cost-effectiveness, and environmental issues. Sodium is believed to be an ideal replacement for lithium owing to its infinite abundance, safety, low cost, environmental friendliness, and energy storage behavior similar to that of lithium. Inhered in the achievement in the development of LIBs, sodium-ion batteries (SIBs) have rapidly evolved to be commercialized. Among the cathode, anode, and electrolyte, the cathode remains a significant challenge for achieving a stable, high-rate, and high-capacity device. 
  • 596
  • 01 Nov 2023
Topic Review
High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries
Lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage.
  • 594
  • 19 Feb 2024
  • Page
  • of
  • 9
ScholarVision Creations