Topic Review
Facultative Annual Life Cycles in Seagrasses
Plant species usually have either annual or perennial life cycles, but facultative annual species have annual or perennial populations depending on their environment. In terrestrial angiosperms, facultative annual species are rare, with wild rice being one of the few examples. 
  • 369
  • 19 Sep 2023
Topic Review
The Naked and Damaraland Mole-Rats
The naked mole-rat (Heterocephalus glaber) and the Damaraland mole-rat (Fukomys damarensis) possess extreme reproductive skew with a single reproductive female responsible for reproduction.
  • 365
  • 29 Nov 2022
Topic Review
Different Types of Region-Based Oral Cancer
Oral cancer is a type of head and neck cancer that affects the mouth, tongue, lips, and throat. According to the World Health Organization (WHO), oral cancer is the sixth most common cancer worldwide, with an estimated 300,000 new cases diagnosed each year. The incidence of oral cancer varies widely between different regions of the world, with the highest rates being reported in South and Southeast Asia.
  • 365
  • 06 May 2023
Topic Review
Apoptosis Inhibitor 5 and Cancer
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis.
  • 365
  • 18 Feb 2024
Topic Review
Extracellular Vesicles and Cancer Multidrug Resistance
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell–cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes.
  • 364
  • 02 Aug 2023
Topic Review
Pathogenesis of FGF23-Related Hypophosphatemic Diseases
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. 
  • 362
  • 09 Aug 2022
Topic Review
Epigenetic Crosstalk within the Microvascular Unit
Epigenetic changes might be classified into three main categories: (i) DNA chemical modifications (e.g., DNA methylation); (ii) histone tails post-translational modifications; (iii) gene expression regulation by noncoding RNAs (e.g., microRNAs (miRNAs), PIWI-interacting RNAs, endogenous short interfering RNAs, long noncoding RNAs). DNA methylation consists of the binding of a methyl group to the 5′ region of a cytosine of the cytosine–guanine dinucleotide (CpG), defined as a CpG island. CpG methylation functionally suppresses gene transcription and is mediated by DNA methyltransferases (DNMTs). In addition to DNA methylation, DNA hydroxymethylation (i.e., the binding of a methyl group to the 5′ cytosine of a CpG island) has recently been discovered to be an epigenetic marker involved in the methylation reprogramming. However, its precise biological meaning still needs further investigation. Histone tails post-translational modifications include methylation, acetylation, ubiquitination and phosphorylation. They come as specific clustered patterns, allowing for the hyperexpression of genes by opening the chromatin, or vice versa. The main enzymes regulating these processes are histone acetyltransferases, deacetylases, methyltransferases and demethylases. While acetylation is, overall, a chromatin opening modification, the effect of methylation depends on the methylated residue and the number of methylations. Finally, noncoding RNAs are involved in transcriptional and post-transcriptional regulations. In particular, based on their size, they can be further classified into small noncoding RNA (<200 nucleotides), including miRNAs, PIWI-interacting RNAs and endogenous short interfering RNAs, and long noncoding RNAs (200–2000 nucleotides). Their potential pathogenetic role might indicate their targeting as a promising therapeutic strategy.
  • 362
  • 15 Mar 2023
Topic Review
Large-Scale Transcriptomes from Multiple Cancer Types
Various abnormalities of transcriptional regulation revealed by RNA sequencing (RNA-seq) have been reported in cancers. However, strategies to integrate multi-modal information from RNA-seq, which would help uncover more disease mechanisms, are still limited. Here, we present PipeOne, a cross-platform one-stop analysis workflow for large-scale transcriptome data. It was developed based on Nextflow, a reproducible workflow management system. PipeOne is composed of three modules, data processing and feature matrices construction, disease feature prioritization, and disease subtyping. It first integrates eight different tools to extract different information from RNA-seq data, and then used random forest algorithm to study and stratify patients according to evidences from multiple-modal information. Its application in five cancers (colon, liver, kidney, stomach, or thyroid; total samples n = 2024) identified various dysregulated key features (such as PVT1 expression and ABI3BP alternative splicing) and pathways (especially liver and kidney dysfunction) shared by multiple cancers. Furthermore, we demonstrated clinically-relevant patient subtypes in four of five cancers, with most subtypes characterized by distinct driver somatic mutations, such as TP53, TTN, BRAF, HRAS, MET, KMT2D, and KMT2C mutations. Importantly, these subtyping results were frequently contributed by dysregulated biological processes, such as ribosome biogenesis, RNA binding, and mitochondria functions. PipeOne is efficient and accurate in studying different cancer types to reveal the specificity and cross-cancer contributing factors of each cancer.It could be easily applied to other diseases and is available at GitHub. 
  • 359
  • 29 Mar 2022
Topic Review
Gut–Brain Axis and the Microbiome Physiology
Human microbiome has not been at the center of scientific research until recent years, when the scientific approach to the gut–brain axis and its medical involvement in multiple pathologies has revealed the decisive role of the intestinal flora.
  • 359
  • 14 Sep 2023
Topic Review
DNA Barcoding and Seafood Mislabelling
The recent increase in international fish trade leads to the need for improving the traceability of fishery products. In relation to this, consistent monitoring of the production chain focusing on technological developments, handling, processing and distribution via global networks is necessary. Molecular barcoding has therefore been suggested as the gold standard in seafood species traceability and labelling.
  • 359
  • 20 Jul 2023
Topic Review
Epigenetic Mechanisms in Hematologic Aging and Premalignant Conditions
Hematopoietic stem cells (HSCs) are essential for maintaining overall health by continuously generating blood cells throughout an individual’s lifespan. However, as individuals age, the hematopoietic system undergoes significant functional decline, rendering them more susceptible to age-related diseases. Growing research evidence has highlighted the critical role of epigenetic regulation in this age-associated decline. 
  • 359
  • 19 Jan 2024
Topic Review
Potassium Binders for Optimizing Therapies in Heart Failure
Heart failure (HF) is a worrisome cardiac pandemic with a negative prognostic impact on the overall survival of individuals. International guidelines recommend up-titration of standardized therapies in order to reduce symptoms, hospitalization rates, and cardiac death. Hyperkalemia (HK) has been identified in 3–18% of HF patients from randomized controlled trials and over 25% of HF patients in the “real world” setting. Pharmacological treatments and/or cardio-renal syndrome, as well as chronic kidney disease may be responsible for HK in HF patients. These conditions can prevent the upgrade of pharmacological treatments, thus, negatively impacting on the overall prognosis of patients. Potassium binders may be the best option in patients with HK in order to reduce serum concentrations of K+ and to promote correct upgrades of therapies.
  • 357
  • 16 Aug 2022
Topic Review
The Nice Ocular MAlignancy Biobank
Ophthalmic malignancies include various rare neoplasms involving the conjunctiva, the uvea, or the periocular area. These tumors are characterized by their scarcity as well as their histological, and sometimes genetic, diversity. Uveal melanoma (UM) is the most common primary intraocular malignancy. UM raises three main challenges highlighting the specificity of ophthalmic malignancies. First, UM is a very rare malignancy with an estimated incidence of 6 cases per million inhabitants. Second, tissue biopsy is not routinely recommended due to the risk of extraocular dissemination. Third, UM is an aggressive cancer because it is estimated that about 50% of patients will experience metastatic spread without any curative treatment available at this stage. These challenges better explain the two main objectives in the creation of a dedicated UM biobank. First, collecting UM samples is essential due to tissue scarcity. Second, large-scale translational research programs based on stored human samples will help to better determine UM pathogenesis with the aim of identifying new biomarkers, allowing for early diagnosis and new targeted treatment modalities. Other periocular malignancies, such as conjunctival melanomas or orbital malignancies, also raise specific concerns. In this context, the number of biobanks worldwide dedicated to ocular malignancies is very limited.
  • 357
  • 04 May 2023
Topic Review
Effects of Chemical/Physical Parameters on Embryo Development
In the field of assisted reproductive technology (ART), human embryo culture plays a pivotal role in the success of in vitro fertilization (IVF) treatments. During human embryo culture, chemical and physical parameters play a crucial role in embryo development and viability.
  • 356
  • 10 Nov 2023
Topic Review
Role of Enhancer-Mediated Transcriptional Regulation in Precision Biology
The emergence of precision biology has been driven by the development of advanced technologies and techniques in high-resolution biological research systems. Enhancer-mediated transcriptional regulation, a complex network of gene expression and regulation in eukaryotes, has attracted significant attention as a promising avenue for investigating the underlying mechanisms of biological processes and diseases. To address biological problems with precision, large amounts of data, functional information, and research on the mechanisms of action of biological molecules is required to address biological problems with precision. Enhancers, including typical enhancers and super enhancers, play a crucial role in gene expression and regulation within this network. The identification and targeting of disease-associated enhancers hold the potential to advance precision medicine.
  • 355
  • 05 Jul 2023
Topic Review
Role of α-Synuclein in Serotonin System Regulation
Pathologically, Parkinson’s disease (PD) is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. 
  • 354
  • 25 Apr 2023
Topic Review
Role of Circular RNAs in Therapy of Tuberculosis
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains one of the most threatening infectious diseases worldwide. A series of challenges still exist for TB prevention, diagnosis and treatment, which therefore require more attempts to clarify the pathological and immunological mechanisms in the development and progression of TB. Circular RNAs (circRNAs) are a large class of non-coding RNA, mostly expressed in eukaryotic cells, which are generated by the spliceosome through the back-splicing of linear RNAs.
  • 352
  • 23 Sep 2022
Topic Review
Skin Architecture, ECM, and Cellular Components
Matricellular proteins are nonstructural, modular, extracellular proteins that exert their effects by binding to cell surface receptors, extracellular matrix (ECM) proteins, soluble signaling molecules, and proteases, thereby modulating cellular responses to changes in their microenvironment, particularly during tissue remodeling. The skin is the largest organ of the body and protects us against environmental insults. It shields the body from mechanical abrasion, pathological infections, dehydration, and fluctuations in body temperature, while the nerves in the skin also provide us with sensations of touch. The skin needs to act as a resilient mechanical barrier, yet provide structural flexibility. The functional unit of skin consists of the stratified epidermis and dermis (including dermal adipose and skin appendages such as hair follicles, sweat, and sebaceous glands) as well as the panniculus carnosus (PC) muscle and the subcutaneous fascia. Notably, the human skin has a thicker epidermis and dermis compared with mouse skin, and the epidermis exhibits undulations forming the rete ridge and inter-ridge (also known as dermal papillae) structures that are absent in mouse skin.
  • 351
  • 07 Oct 2023
Topic Review
Insect Antimicrobial Peptides
Insects are the organisms from which the greatest amount of peptides are isolated. A single insect produces a mixture of 15–20 peptides, the concentration of which in the hemolymph increases rapidly during infection. Their presence in the hemolymph enables the body’s systemic response to infection, while peptides synthesized in epithelial cells participate in local reactions involving the gates of infection. With over a million described species, insects make up the largest class of organisms in the world. Insects show adaptability to repeated changes and resistance to a wide range of pathogens. The mechanism of resistance developed by insects is associated with an immune system based solely on the innate immune response, which allows for a quick and broad response to attacking organisms. Insect antimicrobial peptides (AMPs) have been increasingly used in pharmacy as well as in agriculture. With a growing number of identified peptides that can inhibit human pathogens, insect AMPs are of great interest for biomedical applications. Insect AMPs represent a highly promising alternative to overcome medical problems associated with antibiotic resistance.
  • 350
  • 05 Jul 2023
Topic Review
Circulating Tumor Cells as Precursors of Metastasis
Circulating tumor cells are cancer cells that detach from the primary tumor and enter the bloodstream. These cancer cells in the blood stream eventually result in secondary tumor growth referred to as metastasis. Research on circulating tumor cells is crucial because they can provide valuable insights into cancer progression and treatment response that enhances the patient outcomes. Findings from circulating-tumor-cell-based research can also shed light on cancer metastasis, drug resistance, and tumor evolution, ultimately benefiting the research community by advancing our understanding of cancer biology and guiding the development of innovative treatments. 
  • 350
  • 01 Mar 2024
  • Page
  • of
  • 47
ScholarVision Creations