You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
The Versatility in the Applications of Dithiocarbamates
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. 
  • 1.8K
  • 10 Mar 2022
Topic Review
5-Hydroxymethylfurfural (HMF)
HMF, an indispensable member of the furan-based platform compound, known as the “sleeping giant”, is a bridge between renewable biomass and industrial bulk chemicals. In recent years, the catalytic transformation of biomass to HMF has been widely studied and envisaged to be hopeful in achieving sustainable biorefineries. The synthesis of HMF from biomass requires the acid hydrolysis of biomass to hexose, and then dehydration of hexose, to obtain HMF. In the second step of dehydration, starting from ketohexose (fructose) is more efficient than starting from aldohexose (glucose).
  • 1.8K
  • 11 Oct 2021
Topic Review
Shape Memory Polyurethane
The inherent capability to deform and reform in a predefined environment is a unique property existing in shape memory polyurethane. The intrinsic shape memory ability of the polyurethane is due to the presence of macro domains of soft and hard segments in its bulk, which make this material a potential candidate for several applications. This entry is focused on manifesting the applicability of shape memory polyurethane and its composites/blends in various domains, especially to human health such as shielding of electromagnetic interference, medical bandage development, bone tissue engineering, self-healing, implants development, etc. 
  • 1.7K
  • 30 Oct 2020
Topic Review
Metal Organic Frameworks
Metal–organic frameworks (MOFs) are a family of porous crystalline materials that serve in some cases as versatile platforms for catalysis. 
  • 1.7K
  • 13 Dec 2021
Topic Review
Copper Chrome Arsenate Water-Borne Solution
Copper chrome arsenate (CCA) water-borne solution used to make timber is highly resistant to pests and fungi, in particular, wood products designed for outdoor use. Nowadays, CCA is a restricted chemical product in most countries, since potential environmental and health risks were reported due to dermal contact with CCA residues from treated structures and the surrounding soils. However, large quantities of CCA-treated timber are still in use in framings, outdoor playground equipment, landscaping, building poles, jetty piles, and fencing structures around the world, thus CCA remains a source of pollutants to the environment and of increasing toxic metal/metalloid exposure (mainly in children). International efforts have been dedicated to the treatment of materials impregnated with CCA, however not only does some reuse of CCA-treated timber still occur, but also existing structures are leaking the toxic compounds into the environment, with impacts on the environment and animal and human health.
  • 1.7K
  • 10 Jun 2021
Topic Review
Gold and Silver Nanoparticle-Based Colorimetric Sensors
Gold and Silver nanoparticles (AuNPs and AgNPs) are perfect platforms for developing sensing colorimetric devices thanks to their high surface to volume ratio and distinctive optical properties, particularly sensitive to changes in the surrounding environment. These characteristics ensure high sensitivity in colorimetric devices. Au and Ag nanoparticles can be capped with suitable molecules that can act as specific analyte receptors, so highly selective sensors can be obtained.
  • 1.7K
  • 23 Nov 2021
Topic Review
Recent Advances in A3 Coupling with Metal Salts
Recent advances in the metal salt catalysed multicomponent reaction of aldehydes, amines, and alkynes, known as A3 coupling, which yields propargylamines, a valuable organic scaffold.
  • 1.7K
  • 04 Jul 2022
Topic Review
Bio-Coatings Methods for Fruits and Vegetables Preservation
Consuming fresh food is undoubtedly the best way to enjoy various flavors and nutrients, but their preservation helps to enjoy all these even out of season. Bio-coating technologies hold great promise for the future of food preservation, offering a more sustainable and healthy way to keep fruits and vegetables fresh for more extended periods. The choice of a coating method may depend on the type of fresh fruits and vegetables, the coating material, and the desired coating thickness. The application method should be carried out under hygienic conditions to prevent contamination and ensure the effectiveness of the coating. It is also essential to apply the coating evenly and that it adheres properly to the surface of the produce, maximizing its effectiveness. The coating material can be applied in its pure form or mixed with other ingredients such as antioxidants, preservatives, or antimicrobial agents, thus enhancing its effectiveness.
  • 1.7K
  • 16 Aug 2023
Topic Review
Solar Energy Systems into Seawater Desalination
Solar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. 
  • 1.7K
  • 29 Sep 2022
Topic Review
Switchable Solvents
Switchable solvents are a special class of solvents that have the ability to switch between different forms and properties, depending on external stimuli. The most common type of switchable solvents are called "ionic liquids" which are liquids made up of ions that are in a liquid state at room temperature. These solvents have unique properties that make them attractive for a wide range of applications, such as green chemistry, separation and purification processes, and energy storage. Switchable solvents are a class of solvents that can undergo reversible changes in their physical and chemical properties in response to external stimuli, such as temperature, pressure, or pH. They have gained significant attention in recent years due to their potential as more sustainable and efficient alternatives to traditional solvents in a range of applications, including industrial processes and chemical synthesis. Switchable solvents can be classified into two main categories: reversible ionic liquids (RILs) and switchable polarity solvents (SPSs). RILs are a type of switchable solvent that can change from a liquid to a solid or a gas, depending on the applied stimulus. This reversible phase transition is due to the formation or disruption of ionic interactions between the solvent molecules. RILs have been used in a range of applications, including the separation of chemicals, catalysis, and energy storage. SPSs, on the other hand, are solvents that can switch between polar and non-polar states in response to a stimulus, such as a change in pH or temperature. This switch in polarity can be used to selectively extract or dissolve different types of molecules, making them useful in a range of industrial processes, including extraction, separation, and purification. One of the main advantages of switchable solvents is their potential to reduce the environmental impact of chemical processes by replacing traditional solvents that are toxic or have a high carbon footprint. They can also improve process efficiency by reducing the need for multiple solvents and simplifying the solvent recovery process
  • 1.6K
  • 24 Mar 2023
Topic Review
Processes for Obtaining Syngas and Hydrogen
The growing demand for high-quality chemical products has already stimulated an increased interest in the conversion of hydrocarbon gases (natural gas, methane, biogas) into motor fuels and high value-added chemical products, as well as into hydrogen, which is increasingly in demand on the market. The conversion of natural gas into hydrogen and syngas is still the most complex and costly stage of modern gas chemical processes, the low efficiency of which hinders the development of modern gas chemistry. 
  • 1.6K
  • 14 Apr 2023
Topic Review
Bucherer–Bergs Multicomponent Synthesis of Hydantoins
The Bucherer–Bergs reaction is one of the most convenient general methods for the preparation of 5-substituted and 5,5-disubstituted hydantoins (imidazolidine-2,4-diones, 2,4-dioxoimidazolidines). Generally, in this multicomponent reaction, the aldehyde or ketone in aqueous ethanol is heated at 60–70° with potassium (or sodium) cyanide and ammonium carbonate to produce directly hydantoins 1.
  • 1.6K
  • 28 Jul 2021
Topic Review
Melissa officinalis
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). 
  • 1.6K
  • 06 Apr 2022
Topic Review
Zeolite/Pharmaceuticals System
Zeolites belong to aluminosilicate microporous solids, with strong and diverse catalytic activity, which makes them applicable in almost every kind of industrial process, particularly thanks to their eco-friendly profile. Another crucial characteristic of zeolites is their tremendous adsorption capability. Therefore, it is self-evident that the widespread use of zeolites is in environmental protection, based primarily on the adsorption capacity of substances potentially harmful to the environment, such as pharmaceuticals, pesticides, or other industry pollutants. On the other hand, zeolites are also recognized as drug delivery systems (DDS) carriers for numerous pharmacologically active agents. The enhanced bioactive ability of DDS zeolite as a drug carrying nanoplatform is confirmed, making this system more specific and efficient, compared to the drug itself. These two applications of zeolite, in fact, illustrate the importance of (ir)reversibility of the adsorption process. 
  • 1.6K
  • 11 Aug 2022
Topic Review
Cannabinoid Receptor Antagonist
A cannabinoid receptor antagonist, also known simply as a cannabinoid antagonist or as an anticannabinoid, is a type of cannabinoidergic drug that binds to cannabinoid receptors (CBR) and prevents their activation by endocannabinoids. They include antagonists, inverse agonists, and antibodies of CBRs. The discovery of the endocannabinoid system led to the development of CB1 receptor antagonists. The first CBR inverse agonist, rimonabant, was described in 1994. Rimonabant blocks the CB1 receptor selectively and has been shown to decrease food intake and regulate body-weight gain. The prevalence of obesity worldwide is increasing dramatically and has a great impact on public health. The lack of efficient and well-tolerated drugs to cure obesity has led to an increased interest in research and development of CBR antagonists. Cannabidiol (CBD), a naturally occurring cannabinoid, is a non-competitive CB1/CB2 receptor antagonist. And Δ9-tetrahydrocannabivarin (THCV), a naturally occurring cannabinoid, modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. CBD is a very low-affinity CB1 ligand, that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant.
  • 1.6K
  • 08 Nov 2022
Topic Review
Water Remediation
Chemical pollution of water has raised great concerns among citizens, lawmakers, and nearly all manufacturing industries. As the legislation addressing liquid effluents becomes more stringent, water companies are increasingly scrutinized for their environmental performance. In this context, emergent contaminants represent a major challenge, and the remediation of water bodies and wastewater demands alternative sorbent materials. One of the most promising adsorbing materials for micropolluted water environments involves cyclodextrin (CD) polymers and cyclodextrin-containing polysaccharides. 
  • 1.6K
  • 22 Feb 2021
Topic Review
Alginate Application in Drug Delivery
Alginates are generally used in the food, beverage, cosmetic, paper, textile printing, and pharmaceutical industries. They have been utilized as stabilizers, thickeners, emulsifiers, and hydration and gelling agents. The main use of alginate in the biomedical industry is mainly focused on hydrogels used in wound healing, drug delivery, and tissue regeneration. The broad range of applications is due to its biocompatibility, low toxicity and relatively low-cost consumption, and structural similarity to the extracellular matrices of living tissue.
  • 1.6K
  • 22 Dec 2021
Topic Review
Hydrogen Adsorption in Metal–Organic Frameworks
The development of hydrogen technologies and a wider use of hydrogen fuel cell systems require new materials that can store large amounts of hydrogen at relatively low pressures with small volume, low weight, and fast kinetics for recharging. Among the most challenging materials for hydrogen storage are porous coordination polymers, also called metal–organic frameworks (MOFs). MOFs are two- or three-dimensional porous crystalline materials with infinite lattices. As a result of their ultra-high surface area values (more than 2500 m2·g–1 measured by the Brunauer–Emmett–Teller (BET) approach), they were found to be promising gas adsorbers for small gaseous molecules, including CH4, CHCl3, CCl4, C6H6, C6H12, CO2, Ar, N2, and H2. The main benefit of MOFs is their reversible and high-rate hydrogen adsorption process. A reasonable number of H2 molecules inside the body of MOFs may only be obtained at very low temperatures. To date, MOFs have shown significant progress in applications of gas separation, catalysis, and coordination chemistry.
  • 1.6K
  • 09 Aug 2021
Topic Review
Thin-Layer Chromatography in the Screening of Botanicals
Thin-layer chromatography both in its standard (TLC) and high-performance (HPTLC) format is known as a versatile and high-throughput liquid chromatography technique, with a wide range of important applications. These applications can roughly be divided into those in direct service of life sciences (such as botany, phytochemistry and medicine, and handling rather fundamental issues such as contributing to chemotaxonomy of plants, or searching for enzyme inhibitor templates) and the more practical goals.
  • 1.5K
  • 19 Oct 2022
Topic Review
Flash-Boiling Atomization
Flash-boiling atomization is a method by which a liquid is brought into a superheated state, such as vigorous boiling, in a short timeframe while the bubbles grow considerably fast. This leads to the disintegration of the continuous liquid into tiny droplets. Flash-boiling, effervescent, and air-assisted atomization are based on a two-phase flow to achieve effective atomization. 
  • 1.5K
  • 07 Oct 2023
  • Page
  • of
  • 15
Academic Video Service