You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
One-Carbon Metabolism Modulates Ageing and Neurodegeneration
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. 
  • 2.7K
  • 12 Jan 2022
Topic Review
Nanobodies
Nanobodies are highly water-soluble and stable, have high specificity, and can bind their targets with very high affinity, often in the low nanomolar range. 
  • 2.7K
  • 10 May 2021
Topic Review
Antioxidant Capacity of Seminal Plasma
The total antioxidant capacity of seminal plasma is a very common way of presenting the antioxidant capabilities of the seminal plasma. This term is used to evaluate the total ability of a fluid to scavenge free radicals in solution. In general, fertile men have seminal plasma with a higher total antioxidant capacity than that of infertile patients.
  • 2.7K
  • 26 Oct 2021
Topic Review
Intestinal Stem Cells
Intestinal stem cells (ISC) are crucial players in colon epithelium physiology. The accurate control of their auto-renewal, proliferation and differentiation capacities provides a constant flow of regeneration, maintaining the epithelial intestinal barrier integrity. Under stress conditions, colon epithelium homeostasis in disrupted, evolving towards pathologies such as inflammatory bowel diseases or colorectal cancer. A specific environment, namely the ISC niche constituted by the surrounding mesenchymal stem cells, the factors they secrete and the extracellular matrix (ECM), tightly controls ISC homeostasis. Colon ECM controls ISC homeostasis by exerting physical constraint on the enclosed stem cells through peculiar topography, stiffness and deformability.
  • 2.6K
  • 22 Dec 2020
Topic Review
Pathophysiology of Acute Myeloid Leukemia
Acute myeloid leukemia is a cancerous condition that affects hemopoietic stem cells or progenitors and is defined by the stopping of myeloid lineage development and abnormal proliferation.
  • 2.6K
  • 30 Mar 2023
Topic Review
Gangliosides and Ganglioside GD3-Binding Proteins
Ganglioside GD3 is a major ganglioside in neuronal progenitor cells. Highly sialylated gangliosides, GM1, GD1a, GD1b, GT1b are the main gangliosides in adult neurons. GD3 is implicated in cell attachment and cell-to-cell interaction during embryogenesis. Anti-ganglioside GD3 monoclonal antibody (clone:R24) coimmunoprecipitates heterotrimeric G protein Goα, GPI-anchored neuronal cell adhesion molecule TAG-1, Src-family kinase Lyn and Csk -binding protein Cbp from rat cerebellar granule cells. Ganglioside GD3 is involved in the migration of granule cells during the early stage of cerebellar development via these GD3-binding proteins.
  • 2.6K
  • 03 Apr 2023
Topic Review
Pectin and Gal-3
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains.
  • 2.5K
  • 28 Feb 2022
Topic Review
YAP/TAZ Activation in Head and Neck Cancer
The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. The researchers' analysis of the human Head and neck squamous cell carcinoma (HNSCC) oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. 
  • 2.5K
  • 11 May 2022
Topic Review
Adipogenesis
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This entry focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
  • 2.5K
  • 16 Nov 2020
Topic Review
Natural Killer Cells
When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this ‘perfect balance’ is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.
  • 2.5K
  • 27 Oct 2020
Topic Review
ER Import of Small Human Presecretory Proteins
Protein transport into the mammalian endoplasmic reticulum (ER) used to be seen as strictly cotranslational, i.e. coupled to protein synthesis in time and mechanism. In the course of the last decades, however, various classes of precursors of soluble and membrane proteins were found to be posttranslationally imported into the ER, i.e. without involving the ribosome. The first class to be identified were the small presecretory proteins, tail-anchored membrane proteins followed next. In both cases the information for ER-targeting within the respective precursor is released from the translating ribosome as part of the fully-synthesized precursor, i.e. before it can initiate ER-import. In the case of the small presecretory proteins, the information for ER-targeting and -translocation via the polypeptide-conducting Sec61-channel is a classical N-terminal signal peptide, which is released from the ribosome due to the small size of the precursor. In the second case, the information for ER-targeting and Sec61-independent membrane insertion is a C-terminal transmembrane helix, termed tail-anchor, which first facilitates ER-targeting and membrane insertion of the precursor and, subsequently, represents the single transmembrane domain of the so-called tail-anchored membrane protein. Here, we discuss the current state of insights into the components and mechanisms, which are involved in targeting of small presecretory proteins to and their subsequent translocation into the human ER. In closing we present a unifying hypothesis for ER protein translocation in terms of an energy diagram for Sec61-channel gating.
  • 2.5K
  • 22 Sep 2025
Topic Review
Primary Cilia
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. 
  • 2.5K
  • 15 Dec 2022
Topic Review
Common Features between DNA and Centrosome Cycle
In animal cells, the centrosome is a membrane-less organelle consisting of two interconnected centrioles, pericentriolar materials (PCM) and some additional structures. DNA replication and centrosome duplication during a cell cycle must share common regulations.
  • 2.5K
  • 29 Sep 2022
Topic Review
Oligodendrocyte (OL) Differentiation and Differentiation
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. OL myelination is critical to the vertebrate central nervous system (CNS) function. It supports not only the myelinating cell in the CNS but also provides metabolic and trophic support to the myelinated axon. The myelin sheath is essential insulation surrounding axons for conduction in the nervous system. Hypermyelination or hypomyelination interferes with saltatory nerve conduction, causing neurological disabilities.
  • 2.5K
  • 18 May 2022
Topic Review
Aldosterone
Aldosterone is a steroid hormone that is produced in the adrenal cortex. Its major renal effect is to regulate electrolyte and water homeostasis in the distal tubule, thus maintaining blood pressure and extracellular fluid homeostasis through the activation of mineralocorticoid receptors (MR) in epithelial cells [2]. Aldosterone enters an epithelial cell and binds to the MR. The complex of aldosterone and MR translocates into the nucleus and regulates gene transcription of, among others, the epithelial sodium channel (ENaC) and the signaling proteins and kinases that impact channel and transporter activity, such as serum/glucocorticoid kinases (SGKs).
  • 2.5K
  • 30 Oct 2020
Topic Review
Functions of Lysosomes
Lysosomes are essential organelles of eukaryotic cells and are responsible for various cellular functions, including endocytic degradation, extracellular secretion, and signal transduction. There are dozens of proteins localized to the lysosomal membrane that control the transport of ions and substances across the membrane and are integral to lysosomal function. Mutations or aberrant expression of these proteins trigger a variety of disorders, making them attractive targets for drug development for lysosomal disorder-related diseases. 
  • 2.5K
  • 08 May 2023
Topic Review
Nitric Oxide in Stem Cell Biology
Nitric oxide (NO) is a highly reactive gas with a brief life span, synthesized by the enzyme nitric oxide synthase (NOS) through L-arginine oxidation to L-citrulline. The dual role of NO in embryonic stem cells (ESCs) has been previously reported, preserving pluripotency and cell survival or inducing differentiation with a dose-dependent pattern. In this line, high doses of NO have been used in vitro cultures to induce focused differentiation toward different cell lineages being a key molecule in the regenerative medicine field. Moreover, optimal conditions to promote pluripotency in vitro are essential for their use in advanced therapies.
  • 2.5K
  • 15 Apr 2022
Topic Review
EPR Effect for Cancer Treatment
The EPR effect was first discovered by Maeda and colleagues in solid murine tumors. The polymer-drug conjugates were i.v. administered, and 10-to-100-fold higher concentrations were achieved relative to free drug administration. The concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. 
  • 2.5K
  • 23 Jun 2021
Topic Review
LncRNA-Protein Interactions
LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological processes. They achieve their regulatory function with their ability to interact with a wide range of biological molecules, such as other nucleic acids and proteins. These lncRNA-protein interactions (LPI) are involved in many biological pathways including development and disease. A variety of computational LPI predictors exist, each applying different strategies to achieve their goals, and are dependent on a few biological databases containing subsets of experimentally validated LPI. Most modern lncRNA-protein interaction (LPI) prediction algorithms use machine learning approaches, where algorithms are trained on large datasets with attributes of interest.
  • 2.4K
  • 05 Jul 2021
Topic Review
Glucose 6-P Dehydrogenase in Skeletal Muscle during Exercise
Hypomorphic Glucose 6-P dehydrogenase (G6PD) catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. 
  • 2.4K
  • 02 Nov 2022
  • Page
  • of
  • 81
Academic Video Service