You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Zeolites as Carriers of Nano-Fertilizers
The world is facing immense challenges in terms of food security, due to the combined impacts of the ever-increasing population and the adversity of climate change. In an attempt to counteract these factors, smart nutrient delivery systems, including nano-fertilizers, additives, and material coatings, have been introduced to increase food productivity to meet the growing food demand. Use of nanocarriers in agro-practices for sustainable farming contributes to achieving up to 75% nutrient delivery for a prolonged period to maintain nutrient availability in soil for plants in adverse soil conditions.
  • 2.0K
  • 29 Sep 2022
Topic Review Video
Waste Plastic Pyrolytic Catalysis
With the increase in demand for plastic use, waste plastic (WP) management remains a challenge in the contemporary world due to the lack of sustainable efforts to tackle it. The increment in WPs is proportional to man’s demand and use of plastics, and these come along with environmental challenges. This increase in WPs, and the resulting environmental consequences are mainly due to the characteristic biodegradation properties of plastics. Landfilling, pollution, groundwater contamination, incineration, and blockage of drainages are common environmental challenges associated with WPs. The bulk of these WPs constitutes polyethene (PE), polyethene terephthalate (PET) and polystyrene (PS). Pyrolysis is an eco-friendly thermo-chemical waste plastic treatment solution for valuable product recovery, preferred over landfilling and incineration solutions.
  • 2.0K
  • 24 Apr 2022
Topic Review
High Pressure Processing for Gelatinization and Nutrients Infusion
High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100–600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization but has many other applications. The focus of this entry is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality has also been discussed, highlighting the latest published studies and the innovative methods adopted.
  • 2.0K
  • 30 Nov 2021
Topic Review
Cellulose and Microfluidics
Cellulose, a linear polysaccharide, is the most common and renewable biopolymer in nature.
  • 2.0K
  • 10 Feb 2022
Topic Review
Biodegradable Materials and Polymer Composites with Natural Fillers
Biodegradable materials are natural materials and their properties are relatively inferior to those of non-biodegradable materials. Biofibre reinforcement or blending with other biodegradable products has proven to be an effective way to reduce the cost and brittleness of some commonly used polymers to produce a fully biodegradable composite. PLA and ABS polymers are standard materials used as base materials in composites due to their low cost, easy availability and good mechanical properties. Inorganic or organic materials such as glass, carbon fibres, silicon, ceramics or metals have been used in research to date. 
  • 2.0K
  • 08 Sep 2023
Topic Review
Water-Soluble Vitamins
Vitamins are essential micronutrients in diets that ensure the biochemical functions of the human body and prevent diseases. They act as antioxidants, hormones, and mediators for cell signaling, cell/tissues regulators, and differentiation. They are sensitive compounds that are degraded during cooking and storage processes by factors such as light, heat, oxygen, moisture, pH, time, and reducing agents. Consequently, vitamin encapsulation can overcome limitations associated with external agents such as oxidants, heat, and low solubility, and promotes effective delivery into the body. Water-soluble and fat-soluble vitamins are two main groups of this type of micronutrient. Water-soluble vitamins are important for growth, development, and human body function. 
  • 2.0K
  • 23 May 2022
Topic Review
Braid Hollow Fiber Membranes
Hollow fiber membranes (HFMs) are a good candidate for the membrane separation process due to desirable properties such as high permeability and surface area, good filtration efficiency, small footprint, etc. However, they are often possible to break during the high-pressure cleaning and aeration process. Tubular braids a supported is proposed to improve the mechanical strength of HFMs due to high tensile strength.
  • 2.0K
  • 10 Dec 2021
Topic Review
Ethanol Production in Brazil
Ethanol production in Brazil started in the early 1930s due to laws created by the Brazilian government. However, ethanol production only increased significantly with the National Program of Ethanol implementation in 1975. This program was another action taken by the Brazilian government aiming to provide conditions for the development of the ethanol industry in the country. With the program, it was possible to achieve significant progress; however, it finished in the mid-1980s. Ethanol is produced on a large scale by more than 300 sugarcane mills all over the country. In 2016, the Brazilian government provided another incentive for ethanol production by creating the RenovaBio Program, which aimed to reduce greenhouse gas emissions. Besides the environmental aspect, Brazil's ethanol industry needs to develop to supply the future biofuel demand. According to the forecast and considering technical, economic, and environmental aspects regards the Brazilian ethanol industry, the current and only feedstock used has an excellent chance not to achieve necessary. Thus, the ethanol produced from corn by some facilities in the country would be an attractive secondary feedstock to complement sugarcane ethanol, the primary feedstock. 
  • 2.0K
  • 21 Feb 2023
Topic Review
Green Degumming Processes of Silk
Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications.
  • 1.9K
  • 14 Mar 2022
Topic Review
Electrolysis of Industrial Wastewater
Water electrolysis is a powerful technology for producing high-purity H2, with negligible emission of greenhouse gases and compatibility with renewable energy sources. Additionally, the electrolysis of organic compounds, such as lignin, is a promising method for localised H2 production, as it requires lower cell voltages than conventional water electrolysis. Industrial wastewater can be employed in those organic electrolysis systems due to their high organic content, decreasing industrial pollution through wastewater disposal. Electrocoagulation, indirect electrochemical oxidation, anodic oxidation, and electro-Fenton are effective electrochemical methods for treating industrial wastewater.
  • 1.9K
  • 27 Apr 2023
Topic Review
Solid Acid Catalysts for Hock Cleavage of Hydroperoxides
The oxidation of cumene and following cleavage of cumene hydroperoxide (CHP) with sulfuric acid (Hock rearrangement) is still, by far, the dominant synthetic route to produce phenol. In 2020, the global phenol market reached a value of 23.3 billion US$ with a projected compound annual growth rate of 3.4% for 2020–2025. From ecological and economical viewpoints, the key step of this process is the cleavage of CHP. One sought-after way to likewise reduce energy consumption and waste production of the process is to substitute sulfuric acid with heterogeneous catalysts. Different types of zeolites, silicon-based clays, heteropoly acids, and ion exchange resins have been investigated and tested in various studies. For every type of these solid acid catalysts, several materials were found that show high yield and selectivity to phenol.
  • 1.9K
  • 19 Jan 2022
Topic Review
Scanning Electrochemical Microscopy
Scanning electrochemical microscopy (SECM) is a powerful scanning probe technique for measuring the in situ electrochemical reactions occurring at various sample interfaces, such as the liquid-liquid, solid-liquid, and liquid-gas. The tip/probe of SECM is usually an ultramicroelectrode (UME) or a nanoelectrode that can move towards or over the sample of interest controlled by a precise motor positioning system. Remarkably, electrocatalysts play a crucial role in addressing the surge in global energy consumption by providing sustainable alternative energy sources. Therefore, the precise measurement of catalytic reactions offers profound insights for designing novel catalysts as well as for enhancing their performance. SECM proves to be an excellent tool for characterization and screening catalysts as the probe can rapidly scan along one direction over the sample array containing a large number of different compositions. These features make SECM more appealing than other conventional methodologies for assessing bulk solutions. SECM can be employed for investigating numerous catalytic reactions including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), water oxidation, glucose oxidation reaction (GOR), and CO2 reduction reaction (CO2RR) with high spatial resolution. Moreover, for improving the catalyst design, several SECM modes can be applied based on the catalytic reactions under evaluation.
  • 1.9K
  • 11 May 2021
Topic Review
Olive Oil Industry and Related Waste Management
The production of olive oil involves the sustainable management of the waste produced along the entire production chain. This entry examines the developments regarding cultivation techniques, production technologies, and waste management, highlighting the goals to be achieved and the most reasonable prospects. 
  • 1.8K
  • 19 Jan 2022
Topic Review
Donnan Membrane Process
Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of metals in different water and waste streams.
  • 1.8K
  • 01 Jun 2021
Topic Review
Nanotechnology in Natural Cosmetics
Nanotechnology is a comparatively modern field in the cosmetic industry. Presently, nanotechnology is indeed important as a platform for creating science-based alternatives for advanced therapeutics and cosmetics, resolving antiaging challenges, and enhancing well-being. Nanotechnology is described as an investigation of substances on a molecular and atomic scale. Cosmeceuticals based on nanotechnology offer the benefits of product differentiation, improved bioavailability, and prolonged effects of active ingredients. 
  • 1.8K
  • 18 Nov 2022
Topic Review
Surface-Functionalized Separator
The surface-modified separator plays a role in improving the electrolyte wettability, homogenizing Li+flux, and strengthening the mechanical/thermal property. Due to these favorable benefits, the formation of sharp Li dendrite is efficiently suppressed and the thermal stability of battery is greatly enhanced. In this article, separator-coating materials are classified into six categories in terms of material characteristics to show how each material has different electrochemical properties. We believe that the suggested approach would become a powerful strategy to improve the performance and stability of next-generation batteries such as lithium-metal batteries.
  • 1.7K
  • 23 Sep 2021
Topic Review
Conventional Techniques for Thermal Treatment of Plastic Waste
Plastic waste poses a serious threat to the environment and it has been increasing at an alarming rate. In 2022, global plastic waste generation was reported to be around 380 million tonnes as compared to 353 million tonnes in 2019. Production of liquid fuel from plastic waste is regarded as a viable method for disposing of the plastic and utilizing its energy. A wide range of technologies have been explored for turning plastic waste into fuel, including the conventional pyrolysis, incineration, gasification and advanced oxidation.
  • 1.7K
  • 22 Feb 2023
Topic Review
Desalination Pretreatment Technologies
Pretreatment of raw feed water is an essential step for proper functioning of a reverse osmosis (RO) desalination plant as it minimizes the risk of membrane fouling. Conventional pretreatment methods have drawbacks, such as the potential of biofouling, chemical consumption, and carryover. Non-conventional membrane-based pretreatment technologies have emerged as promising alternatives.
  • 1.7K
  • 11 May 2023
Topic Review
Small-Molecule Semiconductor-Based OFET Temperature Sensors
Organic small-molecule semiconductors offer many benefits over their polymer equivalents, including ease of production, greater purity, and increased charge carrier mobility. OFETs based on small-molecule semiconductors have been intensively investigated as sensors for a variety of applications, including gas sensing, chemical sensing, biosensors, and pressure sensing.
  • 1.7K
  • 17 Jan 2022
Topic Review
Integrated Green Hydrogen Production Processes
The thermochemical water-splitting method is a promising technology for efficiently converting renewable thermal energy sources into green hydrogen. Thermochemical water splitting uses a high-temperature source, e.g., nuclear energy, waste heat, or concentrated solar systems, to convert water into hydrogen and oxygen through cyclic chemical reactions. Several promising routes have been proposed for hydrogen production through green technologies such as biological processes (such as CO gas-fermentation, dark fermentation, etc.), electrical (such as alkaline electrolysis cell, anion exchange membrane electrolysis cell, proton exchange membrane electrolysis cell, solid oxide electrolysis cell, etc.), photonic (bio-photolysis, photofermentation, etc.), thermochemical, etc.
  • 1.7K
  • 01 Mar 2022
  • Page
  • of
  • 12
Academic Video Service