You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Surface Modification of Bacterial Cellulose
The surface of bacterial cellulose was successively modified by copper and zinc oxide nanoparticles using direct current (DC) magnetron sputtering and radio frequency (RF) reactive sputter coating techniques. The target materials, copper and zinc, were 99.99% pure and used in the presence of argon (Ar) gas, while zinc nanoparticles were sputtered in the presence of oxygen gas to make zinc oxide nanoparticles. The as-prepared bacterial cellulose/copper/zinc oxide nanocomposite has good ultraviolet resistance, anti-static and antibacterial characteristics. The surface morphology and chemical compositionof the nanocomposite were examined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopic (EDS) techniques. The prepared bacterial cellulose/copper/zinc oxide nanocomposite illustrates excellent ultraviolet resistance (T.UVA%; 0.16 ± 0.02, T.UVB%; 0.07 ± 0.01, ultraviolet protection factor (UPF); 1850.33 ± 2.12), antistatic behavior (S.H.P; 51.50 ± 4.10, I.E. V; 349.33 ± 6.02) and antibacterial behavior (Escherichia coli; 98.45%, Staphylococcus aureus; 98.11%). Our nanocomposite prepared by sputter coating method could be a promising and effective candidate for ultraviolet resistance, antistatic and antibacterial in term of functional, technical, medical and in many daily life applications.  
  • 2.3K
  • 01 Nov 2020
Topic Review
Clean Ethanol from CO2 Reduction
Using renewable energy to convert CO2 to a clean fuel ethanol can not only reduce carbon emission by the utilization of CO2 as feedstock, but also store renewable energy as the widely used chemical and high-energy-density fuel, being considered as a perfect strategy to address current environment and energy issues. Developing efficient electrocatalysts, photocatalysts, and photoelectrocatalysts for CO2 reduction is the most crucial keystone for achieving this goal. Considerable progresses in CO2-based ethanol production have been made over the past decades. This review provides the general principles and summarizes the latest advancements of electrocatalytic, photocatalytic and photoelectrocatalytic CO2 conversion to ethanol. Furthermore, the main challenges and proposed future prospects are illustrated for further development of the clean fuel ethanol production.
  • 2.2K
  • 24 Nov 2020
Topic Review
Palladium-Plated Copper Bonding Wire
Wire-bonding technology is the most commonly used chip interconnection technology in microelectronic packaging. Metal bonding wire is the key material for wire bonding and plays an important role in the reliability of electronic devices. Palladium-plated copper (PdCu) bonding wire has been widely used because of its low cost, good electrical and thermal conductivity, the fact that it is not easy to oxidize, and its high reliability.
  • 2.2K
  • 21 Aug 2023
Topic Review
Thermal Barrier Coatings
Thermal barrier coating (TBC) systems have presented an ongoing design issue in bids to improve the lifespan of coatings. A TBC can support an extended lifespan by repairing cracks between interfacial layers during high thermal exposure while at the same time increasing coating thickness. Two deposition techniques, atmospheric plasma spray and water-stabilized plasma spray (WSP), have been distinguished to understand mechanical and thermal performance based on their contrasting torch systems and microstructural characterization.
  • 2.1K
  • 23 Dec 2022
Topic Review
Enhancing Lithium-Manganese Oxide Electrochemical Behavior
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. 
  • 2.1K
  • 27 Apr 2021
Topic Review
Films and Coatings Deposition Methods
The modern methods of films and coatings deposition find many new application in industry and technology. The methods are mainly physical and categorized by the species participating in deposits build-up as: (i) atomistic; (ii) granular; and (iii) bulk. The examples of emerging methods developed by the author and belonging to each category are briefly discussed.
  • 2.1K
  • 05 Aug 2025
Topic Review
Reduction of Graphene Oxide
Graphene is a single layer of carbon atoms lined up in a hexagonal lattice, and graphite is composed of these multiple layers.
  • 2.0K
  • 27 Apr 2021
Topic Review
Functionally Graded Thermal Sprayed Coatings
       The manufactured industrial pieces have often the external surfaces being in contact with harsh environment. The turbine blades are submitted to hot gas, the implanted prostheses to body liquids, etc. The protection of these surfaces can be realized using films and coatings. The latters have an important function of rendering the life in service of industrial piece longer, belong however, generally, to another group of materials with very different properties than the piece itself. For example, ceramic coatings are applied frequently on metal and alloys and some intermediate layers should be added between substrate and top coating. This is the concept of "functionally graded coatings" reviewed for the technology of thermal spraying in present entry basing onto paper Appl. Sci. 2020, 10, 5153; doi:10.3390/app10155153. The excerpt of this paper shows the chapters related to the applications of functionally graded coatings and their perspectives of development together with selected cited references.
  • 2.0K
  • 27 Dec 2020
Topic Review
CdTe Solar Cells
Cadmium telluride (CdTe) has achieved a truly impressive development that can commercially compete with silicon, which is still the king of the market. Solar cells made on a laboratory scale have reached efficiencies close to 22%, while modules made with fully automated in-line machines show efficiencies above 18%. Based on the research developed in our laboratory, the fabrication processes of both CdTe polycrystalline thin-film solar cells and photovoltaic modules are critically discussed. The most common substrates, the constituent layers and their interaction, the interfaces and the different “tricks” commonly used for obtaining highly efficient devices will be analyzed.
  • 2.0K
  • 01 Nov 2020
Topic Review
PbS and PbSe in Room-Temperature Infrared Photodetectors
Infrared photodetectors have received much attention for several decades due to their broad applications in the military, science, and daily life. However, for achieving an ideal signal-to-noise ratio and a very fast response, cooling is necessary in those devices, which makes them bulky and costly. The earliest information about lead-based semiconductor materials comes from a patent published in 1904 by Bose, who found and utilized the photovoltaic effect of a crystal of galena. Subsequently, Case carried out his research on thin films of thallous sulfide (Tl2S) in 1917 and 1920. Due to the military needs of infrared information in World War II, Germany developed lead salt (PbS, PbSe and lead telluride (PbTe)) materials vigorously in the 1930s. During that period, different methods for preparing lead salt thin films developed rapidly. Gudden and Kutzscher prepared lead salt films by evaporation and chemical deposition, respectively. Shortly after German scientists firstly studied it, the United States scientists also conducted research on it. Cashman of Northwestern University began work on Tl2S in 1941 and later turned his full attention to the preparation of thin films of PbS, PbSe and PbTe by vacuum evaporation. Among the three typical lead salts used in infrared detectors, PbS and PbSe have been developed and produced to some extent, but PbTe has not been adapted for production and has been gradually phased out.
  • 2.0K
  • 23 May 2022
Topic Review
Benzil
Benzil (BZ) can be converted almost quantitatively to benzoyl peroxide (BP) in aerated polymer films upon irradiation at >400 nm (i.e., the long-wavelength edge of the n→π* absorption band of BZ, where BP does not absorb).
  • 2.0K
  • 20 Sep 2021
Topic Review
Thin Polymer Films on Glass
Thin polymer films play critical roles in various glass industry applications. They have been used as adhesives in automotive and architecture, an anti-fouling coating layer in touch-screen applications, a substrate for organic light emitting diode, and a protective layer for glass packaging.
  • 2.0K
  • 27 Jul 2021
Topic Review
Electroplated Nanotwinned Copper in Microelectronic Packaging
Copper is the most common interconnecting material in the field of microelectronic packaging, which is widely used in advanced electronic packaging technologies. However, with the trend of the miniaturization of electronic devices, the dimensions of interconnectors have decreased from hundreds of microns to tens of or even several microns, which has brought serious reliability issues. As a result, nanotwinned copper (nt-Cu) has been proposed as a potential candidate material and is being certified progressively.
  • 2.0K
  • 17 Aug 2023
Topic Review
Self-Sustainable Greenhouse Agriculture
It is now time for the future-generation and advanced greenhouse design practices to address a range of issues, from the energy and land use efficiency to providing plant-optimised growth techniques. In this Encyclopaedia record, we report on the practical development of spectrally selective and specialist-type  advanced metal-dielectric thin-film filters that produce the optimized illumination spectrum when exposed to natural sunlight that can help maximize the biomass productivity of coated-glass greenhouse crops. Our experimental case study has been performed for the lettuce species, Lactuca sativa, L., yielding promising results.
  • 2.0K
  • 30 Oct 2020
Topic Review
Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition
Metal/carbon nanotube (CNT) composites are promising functional materials due to the various superior properties of CNTs in addition to the characteristics of metals. Electrochemical deposition can be classified into three types: (1) composite plating by electrodeposition or electroless deposition, (2) metal coating on CNT by electroless deposition, and (3) electrodeposition using CNT templates, such as CNT sheets and CNT yarns. 
  • 2.0K
  • 22 Nov 2021
Topic Review
Multilingualism in and out of Films and Stereotypes
Films serve to (re-)create a ‘world’ within the mind of the audience. Additionally, they introduce or reinforce stereotypes portrayed as a reality of the modern world through multiplexity and the strategic use of foreign languages, dialects, and non-native language use, among others. Various concepts of stereotypes can be explored in fiction feature films, especially as film characters are often based on different kinds of stereotypes. Audiovisual texts tend to operate as cultural constructs that reflect and convey certain ideologies within an industry that holds the power to marginalize or belittle voices. Multilingual films highlight the contrasts among and within cultures; hence, they can further exacerbate the marginalization and stereotyping of different cultures and nations, ultimately having damaging effects on society’s perception of different stereotypes, such as race and gender groups, which is shown with the examples from a multilingual film. 
  • 1.9K
  • 07 Aug 2023
Topic Review
Methods of Making Lithium-Ion Batteries Membrane
Due to the growing demand for eco-friendly products, lithium-ion batteries (LIBs) have gained widespread attention as an energy storage solution. With the global demand for clean and sustainable energy, the social, economic, and environmental significance of LIBs is becoming more widely recognized. LIBs are composed of cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a pivotal and indispensable component in LIBs that primarily consists of a porous membrane material, warrants significant research attention. 
  • 1.9K
  • 22 Sep 2023
Topic Review
Modifications Approaches of Potato Constituents
There are various physical, chemical, and biochemical modifications approaches for potato constituents. Physical modifications to alter the physicochemical properties of powders including starches and proteins are e.g., hydrothermal treatment, irradiation, ultrasonication and high-pressure treatment. Starches and proteins, which have been modified via physical methods do not have to be claimed as “modified”. Physical modification is also viewed as cost-efficient and environmentally friendly, because no hazardous substances (chemicals) are used. Chemical modifications refer to the substitution, cross-linking or degradation of a polymer via chemical reaction. Starch contains a large number of hydroxyl groups, and proteins contain a variety of different functional groups (hydroxyl-, carboxyl-, amine groups, etc.). These functional groups can be used as reactive sides for chemical modification reactions such as acylation, esterification, etherification, cross-linking, grafting, acid hydrolysis and oxidation. Biochemical modifications of starches and proteins including enzymatic substitution, cross-linking or hydrolysis are usually regarded as a clean or green alternative to chemical modification. Throughout the different biochemical modification methods, substrate specific enzymes can be used such as in enzymatic de-/branching modification, where the branched structure of potato starch can be altered to effect starch crystallinity and thus its properties.
  • 1.9K
  • 16 Dec 2022
Topic Review
Zinc Coating
Advanced high strength galvanized steel sheet has been one of the dominant materials of modern automotive panels because of its outstanding mechanical properties and corrosion resistance. The zinc coating thickness of hot dip galvanized steel sheet is only about 10–20μm, which is a discarded object on the macro level. However, it is obvious to damage and impact on stamping performance. Therefore, this work takes zinc coating as the research object and builds its mechanical constitutive model based on a nano-indentation test and dimensional analysis theory. We separated the zinc coating from the galvanized steel substrate and constructed a sandwich material model by introducing a cohesive layer to connect the zinc coating and the steel substrate. We obtained the interface binding energy between the zinc coating and the steel substrate through the nano-scratch test. The accuracy of the model is verified by the finite element analysis of hemispherical parts. We used the five-layers element model with 0 thickness cohesive layer to simulate the zinc coating damage of galvanized steel sheet. The hemispherical part drawing experiment is used to verify the feasibility of the finite element analysis results. The results demonstrate that it is more accurate to consider the finite element numerical simulation of the zinc coating, introducing the cohesive element to simulate damage between the coating and the substrate. Drawing depth, stamping force, and the strain of the numerical simulation are closer to the experimental results.
  • 1.9K
  • 01 Nov 2020
Topic Review
Carbon-Coatings Improve Performance of Li-Ion Battery
The development of lithium-ion batteries largely relies on the cathode and anode materials. In particular, the optimization of cathode materials plays an extremely important role in improving the performance of lithium-ion batteries, such as specific capacity or cycling stability. Carbon coating modifying the surface of cathode materials is regarded as an effective strategy that meets the demand of Lithium-ion battery cathodes.
  • 1.9K
  • 12 Jul 2022
  • Page
  • of
  • 12
Academic Video Service